
A Hybrid Approach to Hierarchical Fault Diagnosis

Alexander Feldman1,2 , Arjan van Gemund2 and André Bos1

1Science & Technology BV, P.O. Box 608, 2600 AP, Delft, The Netherlands

Tel.: +31 15 2629889, Fax: +31 15 2629567, e-mail: {feldman,bos}@science-and-technology.nl
2Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

Mekelweg 4, 2628 CD, Delft, The Netherlands

Tel.: +31 15 2786144, Fax: +31 15 2786632, e-mail: a.j.c.vangemund@ewi.tudelft.nl

Abstract

For many systems of realistic size the computa-
tional complexity of complete model-based diag-
nosis is prohibitive. In order to overcome this com-
putational hurdle, approximation-based approaches
do not solve the complete problem, but compute
only the most likely candidates. In this paper we
take an alternative approach and investigate the
speedup of the diagnosis process by exploiting the
hierarchy as is present in well-engineered systems.
The approach comprises a compile-time and a run-
time step. In the first step, a hierarchical CNF rep-
resentation of the system is compiled to hierarchi-
cal DNF of adjustable depth. In the second step,
the diagnoses are computed from the (partially) hi-
erarchical DNF and the actual observations. As in
the second step we may apply a complete or an ap-
proximation algorithm, our approach can be viewed
as complementary towards earlier work on speed-
ing up the diagnosis process. Our hierarchical ap-
proach allows large models to be diagnosed, where
compile-time investment directly translates to run-
time speedup. The benefits of our approach are
illustrated by using a 2-bit and 16-bit Full Adder,
and the LOFAR Array Telescope which is cur-
rently being constructed in The Netherlands. Even
for these modestly hierarchical models the speedup
compared to traditional approaches ranges in the
hundreds.

1 Introduction

Fault diagnosis is a computationally very demanding prob-
lem. In this paper we study mechanisms for exploiting hier-
archy in a divide-and-conquer approach to significantly lower
the computational cost. The potential of the hierarchical ap-
proach is to reduce the complexity of the diagnosis compu-
tation to that of the biggest subsystem in a model (e.g., in a
system compromising non-connected subsystems the time for
computing diagnosis can be reduced to the sum of the times
for diagnosing each subsystem separately). For a class of de-
composable systems this may lead to substantial savings in
the diagnosis complexity. In this paper we present a hierarchi-
cal approach where we demonstrate that real-world systems

may have sufficient hierarchy and subsystem independence
for such significant gains to be made.

Exploiting hierarchy has been the subject of much work.
In [Stumptner and Wotawa, 2003], a diagnosis problem is
represented as a Constraint Satisfaction Problem (CSP). In
this framework the issues of model decomposition and hier-
archical diagnosis are discussed. The problem of discovering
hierarchies is also treated in [Provan, 2001], while [Mozetič,
1991] discusses methods for hierarchical abstraction. Implicit
system structure to speedup diagnosis is used in [Darwiche,
1998]. Our technique differs in the fact that it uses explicitly
specified system decomposition and in the way it combines
combinatorial and probabilistic approaches.

Our hybrid approach comprises a compile-time and a run-
time step, both of which exploit the hierarchy of the models.
The input model is assumed to be represented in terms of a
hierarchical CNF (a conjunctive normal form is a conjunc-
tion of clauses, where a clause is a disjunction of literals and
a literal is a negated or unnegated variable). In the first step
the model is compiled to DNF (a disjunctive normal form is
a disjunction of terms, where a term is a conjunction of liter-
als) where significant speedup is obtained, compared to tradi-
tional CNF to DNF compilation (e.g., we achieve a speedup
of 549 even for a 2-bit adder). This conversion to DNF may
still take exponential time, but we have to do this only once
as only the fixed part of the model is involved.

A special feature of the hierarchical CNF compilation is
that it can also compile to hierarchical DNF where the depth
of the hierarchy can be varied between fully hierarchical and
fully expanded (“flat”, i.e., ordinary DNF). This feature al-
lows to avoid the combinatorial explosion that occurs for very
large models that are not amenable to full compilation. In
this “short-cut” mode an adjustable part of the computational
work is transferred from compile-time to run-time.

In the second step the compiled model, together with the
observations is solved, generating the diagnoses. The diag-
nosis approach taken in this paper is based on an informed
search algorithm that exploits the hierarchy as far as still
present in the pre-processed model. In particular, we have
chosen A* using an admissible heuristics based on a-priori
health state probabilities such as in Conflict-Directed A*
(CDA* [Williams and Ragno, 2004]), but other informed
strategies are possible. Although the choice for CDA* would
further improve performance, in our aim to assess the poten-

tial of hierarchy we have focused on adapting the more simple
A* algorithm to our hierarchical framework.

We have compared the performance of the hierarchical al-
gorithm with the performance of a traditional A* diagnosis
search. Depending on the structure of the problem we observe
speedups up to 9× 105. In the worst case the hierarchical ap-
proach performs similar to traditional A*, while speedup of
102 − 105 is measured for well-decomposed problems.

The rest of the paper is organized as follows. In Section 2
we introduce concepts and terminology in traditional model-
based diagnosis. In Section 3 we present our compile-time
and run-time diagnosis algorithms. In Section 4 we present
the performance results. Finally, conclusions and notes for
future work are presented.

2 Non-Hierarchical Diagnosis

We will base the hierarchical diagnosis approach on the well-
known model-based diagnosis formalisms introduced by [de
Kleer and Williams, 1987]. These classical approaches in
general use one level of hierarchy, i.e., the set of components
of which the overall system is built up.

Definition 1 (System). A diagnostic problem DP is defined
as the ordered triple DP = 〈SD, COMPS, OBS〉, where SD
is a set of propositional sentences describing the behavior of
the system, COMPS is a set of components, contained in the
system, and OBS is a term stating an observation over some
set of “measurable” variables in SD.

For brevity, we refer to the classical diagnosis approach as
“flat”, i.e., non-hierarchical. In the latter technique we have
for each component c ∈ COMPS a propositional variable hc

that represents a normally functioning component, c. We will
call the variables hc health variables and every instantiation
of

∧

c∈COMPS hc a health state.
In this paper we use consistency-based diagnosis as op-

posed to abductive diagnosis. Next, we proceed with a more
precise definition of diagnosis.

Definition 2 (Diagnosis). A diagnosis or partial diagnosis
for the system DP = 〈SD, COMPS, OBS〉 is a set D ⊆
COMPS such that:

SD ∧ OBS ∧

[

∧

c∈D

¬hc

]

∧

∧

c∈(COMPS\D)

hc

is consistent.

A diagnosis D is a minimal or kernel diagnosis if no other
diagnosis D′, such that D′ ⊂ D, exists. An informed search,
such as the A* algorithm used by us, computes the diagnoses
in best-first order, starting with a minimal diagnosis (note that
the diagnoses produced subsequently are not necessarily min-
imal). Thus, not all minimal diagnoses need be computed (the
number of all minimal diagnoses can be still exponential in
the number of components [Vatan, 2002]).

As we have already mentioned in Section 1, the diagnosis
can be split in two phases: a compilation step and a run-time
step. The compilation step constitutes a conversion of the sys-
tem description into DNF. From DNF diagnosis is straightfor-
ward as described by Proposition 1.

Proposition 1. Let DP = 〈SD, COMPS, OBS〉, be a system.
Then D is a partial diagnosis of DP iff the conjunction of all
the health variables of the elements in D is an implicant of
SD ∧ OBS.

From Proposition 1 it follows that to perform diagnosis, it
is enough to convert SD to DNF and to check each term in
the resulting DNF for consistency with OBS. Furthermore,
in order to receive all the minimal diagnoses, it is necessary
to compute a minimal cover of the prime implicants of SD ∧
OBS.

In this paper we assume that all the components are de-
scribed in CNF1. The non-hierarchical approach is illustrated
by diagnosing a small circuit, shown in Figure 1.

h3

h2

h1
ba

c

d

Figure 1: A circuit consisting of three inverters.

For a weak-fault model the corresponding propositional sys-
tem is given by:

SD =

{

(¬h1 ∨ a ∨ b) ∧ (¬h1 ∨ ¬a ∨ ¬b)
(¬h2 ∨ b ∨ c) ∧ (¬h2 ∨ ¬b ∨ ¬c)
(¬h3 ∨ b ∨ d) ∧ (¬h3 ∨ ¬b ∨ ¬d)

(1)

In (1), the health status of the component set COMPS =
{I1, I2, I3} is given by the health variables h1, h2 and h3.
Converting SD to DNF results in: φ = (¬h1 ∧¬h2 ∧ ¬h3) ∨
(¬a∧b∧¬h2∧¬h3)∨(a∧¬b∧¬h2∧¬h3)∨(¬b∧c∧¬h1∧
¬h3)∨(b∧¬c∧¬h1∧¬h3)∨(¬b∧d∧¬h1∧¬h2)∨(b∧¬d∧
¬h1∧¬h2)∨(¬b∧c∧d∧¬h1)∨(b∧¬c∧¬d∧¬h1)∨(¬a∧
b∧¬d∧¬h2)∨ (a∧¬b∧ d∧¬h2)∨ (¬a∧ b∧¬c∧¬h3)∨
(a∧¬b∧ c∧¬h3) ∨ (¬a ∧ b∧¬c∧ ¬d)∨ (a∧¬b∧ c∧ d).

Consider OBS = a ∧ ¬c ∧ d over the observable variables
a, c and d. Instantiating φ with OBS gives us: φ ∧ OBS |=
(¬h1 ∧¬h2 ∧¬h3)∨ (¬b∧¬h2 ∧¬h3)∨ (b∧¬h1 ∧¬h3)∨
(¬b ∧ ¬h1 ∧ ¬h2) ∨ (¬b ∧ ¬h2). Two implicants of φ ∧
OBS form minimal diagnoses; these are D1 = {¬h2} and
D2 = {¬h1,¬h3} (and are the first ones to be generated by
A* for equal a priori health probabilities). Note, that in this
particular case D3 = {¬h1,¬h2,¬h3} is also a diagnosis but
it is not minimal.

The conversion to DNF in the above example can be ac-
complished off-line, thus demonstrating a non-strict compila-
tion approach. It is beyond the scope of this paper to discuss
compilation techniques, [Liberatore, 1998], but we note that
the above compilation step is similar to the first step of our
hierarchical approach.

3 Hierarchical Diagnosis

In this section we present our hybrid, hierarchical approach.
First we introduce an algorithm for the compilation of hierar-
chical models. Next we present an algorithm for hierarchical
A* diagnosis of the compiled model.

1For propositional Wff to CNF cf. [Tseitin, 1983].

In order to present the algorithms we first introduce the notion
of a hierarchical system in terms of a tree-like data structure
which includes ordinary “flat” systems in its nodes.

Definition 3 (Hierarchical System). A hierarchical sys-
tem is a rooted, edge-labeled, acyclic multidigraph H =
〈V, ρ, E〉, where every node Vi, Vi ∈ V , contains a knowl-
edge base SDi and a set of components COMPSi. The multi-
digraph is such that COMPS1∩COMPS2∩ . . .∩COMPSn =
∅. The root node is marked by ρ and the labels of the edges
in E are maps f : SDi → SDj between the literals in the
knowledge bases represented by the nodes Vi and Vj .

Furthermore, we define hierarchical CNF and hierarchical
DNF as hierarchical representation systems with the proposi-
tional knowledge base of each node Vi ∈ V in CNF or DNF
respectively. A hierarchical diagnosis problem is an ordered
pair HP = 〈H, OBS〉 where OBS is a term over some observ-
able variables in H . The size of a hierarchy can be defined in
terms of the size of the knowledge-bases in the nodes of the
hierarchy: |H | =

∑

e∈E |SDe|, where |SDe| is the size (e.g.,
if SD is DNF, the number of terms) of the knowledge-base in
the node in which edge e terminates.

In our approach we also consider the depth of a hierarchy
d, which is one of its fundamental parameters.

Definition 4. The depth d of a hierarchy H = 〈V, ρ, E〉 is
the number of nodes in the longest path from ρ to any node
v ∈ V such that v is of outdegree 0.

3.1 Hierarchical CNF to DNF Transformation

In this section we present the first part of our hybrid tech-
nique. Algorithm 1 modifies its input (a hierarchical CNF),
producing a hierarchical DNF of adjustable size. As we will
experimentally confirm in Section 4, the more processing
time we spend at this phase, the more speedup we obtain at
the diagnosis in the second, run-time, part of our technique.
The nested subroutine FLATTENNODE converts a CNF hi-
erarchy to a flat DNF by converting each node to DNF and
then multiplying the nodes alongside the multidigraph edges.
The function COMPILEDNF transform a node’s CNF to DNF.
This function can be implemented using a slightly modified
satisfiability checker [Davis and Putnam, 1960], modified to
enumerate all possible instantiations, or alternatively adding
iteratively each negated assignment to the original formula
until no more consistent instantiations exist.

We use Algorithm 1 in three configurations, depending on
the parameter t. Let d be the initial depth of the hierarchy H .
If t = d, then FLATTENNODE will never descend recursively,
and after FLATTEN finishes, H will be the original hierarchy
with each of its node converted from CNF to DNF. The result
is hierarchical DNF which we denote DNF/H. On the other
extreme we may invoke FLATTEN with parameter t = 1. In
this case FLATTEN will fully flatten H , i.e., the result will
have one node only. The result of FLATTEN in this config-
uration we denote as DNF/F. In most of the cases we have
1 < t < d. The result of FLATTEN, then, will be a partially
flattened DNF (DNF/P) as the depth of the DNF/P is t.

To demonstrate Algorithm 1 we consider a small CNF
hierarchy H consisting of three nodes (V1, V2 and V3) and
two edges (e1 = 〈V1, V2〉 and e2 = 〈V1, V3〉). Let V1, V2

Algorithm 1 Hierarchical model compilation.

procedure FLATTEN(H, N, t, r)

inputs: H = 〈V, ρ, E〉, hierarchy
N , the current node, N ∈ V , initially ρ
t, integer, maximal depth
r, integer, current depth, initially 1

local variables: SD, the CNF in N

function FLATTENNODE(H, K) returns a DNF

inputs: H = 〈V, ρ, E〉, hierarchy
K , the current node, K ∈ V

local variables: SD1, the CNF in K
P, Q, term sets
R, term set, initially ∅

P ← COMPILEDNF(SD1)
for all {e ∈ E : e = V → L} do

5: Q← FLATTENNODE(H, L)
for all {p ∈ P, q ∈ Q : p ∧ q 6|=⊥} do

R← R ∪ {p ∧ q}
end for

end for
10: return R

end function

if t = r then
SD← FLATTENNODE(H, N)
E ← E \ {e ∈ E : e = V →M}

15: else
SD← COMPILEDNF(SD1)

end if
for all {e ∈ E : e = V →M} do

FLATTEN(H, M, t, r + 1)
20: end for

end procedure

and V3 contain respectively SD1 = (¬h1 ∨ z) ∧ (x ∨ z),
SD2 = ¬h2∧¬x and SD3 = (¬h3∨z)∧y. In this example we
will produce DNF/F, hence we invoke FLATTEN with t = 1.
In this case COMPILEDNF will be immediately invoked on ρ
and FLATTEN will never recursively descend. The workings
of FLATTENNODE on ρ are described next. The formula SD1

in node V1 needs to be converted to DNF, and at the first in-
vocation of FLATTENNODE we get P = {¬h1 ∧ x, z}. The
function is invoked recursively for e1 and as in the second
node SD2 is already in DNF the result is: Q = {¬h2 ∧ ¬x}.
Multiplying P and Q results in a set with one consistent term:
R = {¬h2 ∧ ¬x ∧ z}. At the second recursive call of FLAT-
TENNODE we convert SD3 = (¬h3 ∨ z) ∧ y to DNF which
results in Q = {¬h3 ∧ y, y ∧ z}. Multiplying the partial re-
sult R by P for the second time results in the final set of terms
R = {¬h2 ∧ ¬h3 ∧ ¬x ∧ y ∧ z,¬h2 ∧ ¬x ∧ y ∧ z}.

The first and the second multiplications in the above ex-
ample are performed in two steps each. The whole trans-
formation takes four steps, which is obviously an improve-
ment over a brute-force enumeration of all possible instan-
tiations over the variables h1, h2, h3, x, y, and z in the flat
CNF formula produced from the hierarchy H . In Section 4.1
we show the speedup potential of the algorithm compared to
non-hierarchical compilation.

3.2 A* Search in a Hierarchical DNF

In this section we present the hierarchical diagnosis algo-
rithm, which is based on A*. We assume that components
failures are independent and use the a priori probability of
a fault term to guide a heuristic search for the most likely
diagnosis. The heuristic function for getting to a node con-
taining a term σ in a tree constructed from a hierarchy with
an equivalent DNF, φ, is f(σ) = P1(h1)P2(h2) . . . Pn(hn),
where h1, h2, . . . , hn are all the health variables in φ. In this
case the probability of hi being true if hi is in σ is P (hi) and
Pi(hi) = 1 − P (hi) if ¬hi is in σ. If neither hi nor ¬hi are
present in σ, Pi(hi) = max(P (hi), 1 − P (hi)). Traversing
the nodes of the hierarchy while using f(σ) as a heuristics,
allows us to construct the A* algorithm shown below.

Algorithm 2 A* search in a hierarchical DNF dictionary.

procedure HIERARCHICALDIAGNOSE(H)

inputs: H , hierarchical node
local variables: Q, priority queue

s, c, terms

PUSH(Q, INITIALSTATE(H))
while SIZE(Q) 6= 0 do

c←POP(Q)
5: if DIAGNOSIS(c) then

OUTPUTDIAGNOSIS(c)
ENQUEUESIBLINGS(Q, c)

else
if (s←NEXTBESTSTATE(H, c)) 6|=⊥ then

10: PUSH(Q, s)
else

ENQUEUESIBLINGS(Q, c)
end if

end if
15: end while

end procedure

In its main loop, Algorithm 2 selects such a term c from the
hierarchical node that the heuristic estimate f(c) is maxi-
mized. When a consistent conjunction of terms is chosen
from all the nodes in the hierarchy, OUTPUTDIAGNOSIS is
invoked to send the result to the user.

The auxiliary functions PUSH, POP, and SIZE perform the
respective priority queue manipulation on Q. The initial state
in the search tree, returned by INITIALSTATE, is the empty
term. The selection of next candidate states to be added to
the search queue is done by the functions NEXTBESTSTATE

and ENQUEUESIBLINGS. The former chooses the child state
of the current state c and uses this term s from it, which again
maximizes the utility function f(s). When reaching a leaf or
inconsistent node, ENQUEUESIBLINGS is used to queue the
siblings of the current node and all its ancestors. Only consis-
tent terms are added to the queue, and OUTPUTDIAGNOSIS

should keep track of the diagnoses which are already discov-
ered to prevent duplicate output. A practical approach is to
keep the diagnoses in a trie [Forbus and de Kleer, 1993].

Let us illustrate the workings of Algorithm 2 on the hierar-
chical problem HP = 〈H, OBS〉, with a hierarchy H consist-

ing of three nodes V1, V2, and V3, two edges e1 = {V1, V2},
e2 = {V1, V3} and a root node V1. The DNF expressions in
V1, V2, and V3 are φ1 = {}, φ2 = (h1 ∧ ¬a ∧ b) ∨ (h1 ∧ a ∧
¬b)∨ (¬h1) and φ3 = (h2 ∧¬b∧ c)∨ (h2 ∧ b∧¬c)∨ (¬h2),
respectively. We assume that OBS = c and Pi(hi) = 0.95 for
i = 1, 2.

After instantiating the terms in V1, V2, and V3 with OBS
and removing the inconsistent terms we get the search tree in
Figure 2.

¬h2

s1

s2

s4

s5

s6

s7

¬h1

h1 ∧ ¬a ∧ b

h2 ∧ ¬b ∧ c h1 ∧ a ∧ ¬b

h1 ∧ ¬a ∧ b

h1 ∧ a ∧ ¬b

s9

s8

s3 ¬h1

{}

Figure 2: The search tree constructed by Algorithm 2 applied on an
example hierarchical diagnosis problem.

Initially, the state s1 is pushed on the queue. Its best child is
s2 as it has higher probability than s3: f(s2) = 0.95, while
f(s3) = 0.05. When s2 is popped next, its first child s4 is
skipped as it leads to inconsistency (in the b literal) and s5

is pushed on the Q. Next s5 is retrieved (it is the only state
on the queue) and it is a leaf node, hence its health variables
form a diagnosis. After showing the diagnosis, Algorithm 2
pushes the best consistent siblings of all the predecessors of
s5 on the queue. These are s6 and s3. Now s3 has the the
highest probability in the queue, hence it is popped and its
best child s7 is pushed. In the next step s7 is popped, which
is a diagnosis. The process continues until, finally, we pop
s9 from the queue; a state which has the lowest probability
diagnosis: D = {¬h1,¬h2}.

Normally, the performance of Algorithm 2 is not sensitive
to the choice of the a-priori health probabilities for the com-
ponents. This can change for observations leading to multiple
faults, especially if these faults are in more than one subsys-
tem, which is unlikely for well-engineered systems provid-
ing subsystem isolation. Algorithm 2 works faster for well-
decomposed trees (i.e., having a small number of shared vari-
ables). As we will see in Section 4, this is not always the case.
In practice, however, subsystems sharing more variables ap-
pear at the low levels of the hierarchy, constraining the num-
ber of solutions. Such subsystems are likely to be flattened by
the pre-processing part of our hybrid algorithm thus leading
to a fast overall diagnosis for systems well decomposed at the
top level and constrained at the nodes, appearing close to the
leaves of the tree.

Algorithm 2 differs from the traditional A* by the way it
constructs its search tree. The depth of the search tree equals
the number of subsystems and the order in which they are
traversed depends on the hierarchy of the system (i.e., terms
of top-level systems show near the root of the search-tree).
In Section 4 we show the speedup of the algorithm as func-
tion of the compilation depth of the hierarchical DNF input,
compared to traditional A*.

4 Experimental Results

In this section we empirically assess the performance of the
algorithms using three test-cases: models of a 2-bit (FA2)
and a 16-bit (FA16) full-adder, and a model of a Low Fre-
quency Array radio-telescope (LOFAR). All our algorithms
described in this paper are implemented as part of a toolkit
based on the modeling language LYDIA (Language for sYs-
tem DIAgnosis [van Gemund, 2003]).

FA FA c′′oc′o

c′i c′′i
o′ o′′

i′2 i′′2i′′1i′1

o1 o2

x1 x2y1 y2

ci

co

it,0 it,1 it,m. . .

ot,0 ot,1 ot,m. . .

h0 h1 . . . hn

LOFAR

Figure 3: A 2-bit full-adder (left), composed of two full-adders.
In one LOFAR element (right) t observations in time instantiate the
same health variables and t different sets of observation variables.

The three benchmark systems are modeled in LYDIA which
allows us to describe propositional hierarchical systems. The
FA2 model is constructed of two full-adders, each full-adder
constructed of two half-adders and an OR-gate. The half-
adders consist of a XOR and an AND gate. The FA16 model
demonstrates multi-level subsystem repetition. The top-level
system consists of two 8-bit full-adders, each of them com-
posed of two 4-bit full-adders, etc. (cf. Figure 3).

The LOFAR model describes the behavior of a single LO-
FAR element (the full system is designed to have 25 000
identical elements). The LOFAR system is hierarchical (i.e.,
it contains subsystems for an Analog to Digital Processing
component, filters, selectors, etc.). The leaf components are
described in terms of propositional expressions (e.g., defined
are their inputs/outputs under loss of power, etc.).

Characteristic for all the models is that they are under-
constrained at the top-level. The LOFAR model features a
conjunction of 10 observations of the LOFAR input/output
variables (cf. Figure 3), the flat DNF equivalent of a single
element being constrained (|φ| < 104). The 10 top-level
instances of a LOFAR element have different sets of input
and output variables but they share the same health variables,
which allows reasoning about the state of the system by suc-
cessively instantiating a new set of input variables. This leads
to a space explosion in the top-level system if we would try
to completely flatten it.

Table 1 summarizes some of the input characteristics of
the hierarchical benchmark models, where |E| denotes the
number of edges in a hierarchy, |V | denotes the number of
nodes, and d denotes the depth of a hierarchy. Column N
denotes the number of variables in a hierarchy and column M
shows how many of them are health variables. The system
with maximal number of variables in a hierarchy is SDmax

and the number of variables in SDmax is denoted as |SDmax|.
The FA2 and FA16 models are weak-fault, while LOFAR is
predominantly strong-fault.

All our tests are performed on a 333 MHz Ultra-SPARC 10
workstation with 256 MB of memory, running Solaris 8.

Model N M |SDmax| d |E| |V |

FA2 50 20 4 4 7 6

FA16 283 160 4 7 13 9

LOFAR 387 54 7 7 65 34

Table 1: Size of the input models.

4.1 Hierarchical CNF to DNF Transformation

As mentioned earlier, our hybrid approach permits compila-
tion to be limited for large models where full flattening (i.e.,
compilation to completely flat DNF) would be too explosive.
In the experiments we consider three hierarchical depths (t),
i.e., fully hierarchical (postfix H), partially flattened (postfix
P), and fully flat (postfix F). The hierarchical depths of the
models FA2/H, FA16/H, and LOFAR/H are shown in Table 1.
We have chosen the (compilation) depths of FA2/P and LO-
FAR/P to be t = 2 and the depth of FA16/P to be t = 4. In
this case, FA2/P contains full-adders in its leaf nodes, FA16/P
is composed of flat 2-bit adders and LOFAR/P contains flat
representations of a LOFAR element in its leaf nodes.

In all of three the models |SDmax| is small (cf. Table1). As
a result, FA2, FA16 and LOFAR compile to DNF/H in 0.08
s, 0.19 s, and 0.3 s, respectively. It is visible that, for a well-
decomposed system, the conversion from CNF/H to DNF/H
consumes negligible time.

In order to compare the hierarchical compilation approach
to the traditional (combinatorial) CNF to DNF conversion
method, we need to convert the CNF/H representations to
CNF/F (CNF/F is also needed for the flat A* which we will
use as a comparison base in the run-time part of our experi-
ments). The time for this (trivial) transformation is also negli-
gible and the CNF/H representations of FA2, FA16, and LO-
FAR are converted to CNF/F in 0.06 s, 0.24 s, and 1.67 s,
respectively.

CNF/F to CNF/H to CNF/H to
DNF/F DNF/F DNF/P

t [s] size t [s] size t [s] size

FA2 22 824 2 774 41.54 3 365 0.32 515

FA16 T M 42.53 26 927

LOFAR T M 50.12 29 361

Table 2: Compilation time and resulting DNF sizes of the FA2,
FA16, and LOFAR models. Timeouts are denoted by T and memory
exhaustion by M.

Table 2 compares the traditional, non-hierarchical approach
for compilation (converting CNF/F to DNF/F in the first col-
umn) with Algorithm 1. For FA2 the speedup achieved by
Algorithm 1 in producing DNF/F is 549. The flat DNF ob-
tained in a hierarchical way is a slightly bigger than the one
obtained using a conventional CNF to DNF translator. With
the bigger FA16 and LOFAR models the traditional CNF to
DNF compilation results in a time-out, while Algorithm 1 ex-
hibits a memory exhaustion when trying to fully flatten them
due to the excessive size of their DNF equivalents. Partial
flattening proceeds as shown by the table, and results in con-
siderable diagnosis speedup as will be discussed below.

4.2 Hierarchical A* Performance

In the following experiments we compare the hierarchical A*,
described in Algorithm 2, with traditional A*. The results are
shown in Table 3. For all the experiments, we have chosen
observations that exclude the nominal (all healthy) behavior
of the system as a diagnosis (e.g., for FA2 and FA16 we have
0 on all the inputs and 1 on the carry output, which corre-
sponds to single, and multiple faults).

CNF/F (A*) DNF/H DNF/P DNF/F

FA2 500.6 636.7 2 389.1 1 161.4

FA16 0.0067 0.51 613.3 -

LOFAR 1.36 0.87 36 034 -

Table 3: Run-time diagnosis rates [diagnoses/s], averaged over an
interval of 300 s.

Algorithm 2 is similar in speed or better than (traditional) A*.
Due to the small size of FA2, the 27 percent speedup indicates
a similar performance of the two approaches. The results with
the FA16 model, however, show a speedup factor of 76 in fa-
vor if the hierarchical search. In the case of LOFAR, in con-
trast, the diagnosis rate of Algorithm 2 is 56 percent slower
than that of the traditional A* method. The faster result for
the traditional A* search comes for the high probability of the
diagnoses. On the other hand LOFAR/H exposes a small size
(|H | = 1 781) and considerable depth (d = 7). In addition to
that, Algorithm 2 produces in all the cases (DNF/H, DNF/P,
and DNF/F) diagnoses with almost a constant rate and the
total number of diagnoses is close to that of CNF/F.

As to be expected, partial flattening increases the perfor-
mance of the hierarchical method. For FA2/P, FA16/P and
LOFAR/P we observe speedups of 5, 91 542 and 26 497, re-
spectively. This is explained by the following. First, the
symbolic multiplication in Algorithm 1 leads to shorter terms
(i.e., terms which do not contain all the health variables in
SD). Algorithm 2 preserves these shorter terms, with some
health variables being immaterial, as opposed to the full
health variable instantiations of the traditional A*. If the
number of all health variables is n and a solution term has m
variables (m < n), this term is expanded to 2n−m full health
instantiations. A second reason for the improved performance
is that during the compilation of the partially flattened model,
many inconsistent states are eliminated. Therefore, a partial
flattening to a moderate depth (more would lead to an explo-
sion in the size of the DNF/P) results in an additional speedup
of the hierarchical approach compared to the traditional A*.

5 Conclusion

In this paper we have described a two-step hierarchical
method for computing diagnoses. The first, preprocessing
step, transforms a hierarchical CNF model of the system to
a fully or partially flattened DNF. In the second step, this hi-
erarchical DNF is input to a hierarchical A* search for states
consistent with the observation. The heuristic used for the
hierarchical A* search is the a-priori probability of a state.

The improved performance of the hierarchical approach
over the traditional CNF to DNF conversion and non-
hierarchical A*, gained in both parts of the algorithm are

intuitive and are empirically demonstrated. The hierarchi-
cal CNF to (flat) DNF compilation performs approximately
500 times better than a traditional DPLL-based CNF to DNF
converter. As conversion to a fully flat DNF is possible only
for small models, the partial flattening mode is typically used,
where more preprocessing immediately translates to dramatic
run-time speedups. Experiments, involving a 2-bit and 16-bit
Full Adder and a model of the LOFAR system, demonstrate
a factor of 2 - 91 542 speedup in diagnosis with partially flat-
tened hierarchies, corresponding to a one-only, compile-time
investment of a mere 50 seconds.

Future work includes using more benchmarks, in particular
evaluating the performance of the search related to the model
size, implementing a conflict-directed version of the hierar-
chical A* algorithm, and devising a method for an automatic
determination of the partial flattening depth, providing an op-
timal time/space trade-off in diagnosis computation.

References

[Darwiche, 1998] Adnan Darwiche. Model-based diagnosis
using structured system descriptions. JAIR, 8:165–222,
1998.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory. JACM,
7(3):201–215, 1960.

[de Kleer and Williams, 1987] Johan de Kleer and Brian
Williams. Diagnosing multiple faults. JAI, 32(1):97–130,
1987.

[Forbus and de Kleer, 1993] Kenneth Forbus and Johan de
Kleer. Building Problem Solvers. MIT Press, 1993.

[Liberatore, 1998] Paolo Liberatore. On the compilability of
diagnosis, planning, reasoning about actions, belief revi-
sion, etc. In Proc. KR’98, pages 144–155, 1998.

[Mozetič, 1991] Igor Mozetič. Hierarchical model-based di-
agnosis. JMMS, 35(3):329–362, 1991.

[Provan, 2001] Gregory Provan. Hierarchical model-based
diagnosis. In Proc. DX’01, 2001.

[Stumptner and Wotawa, 2003] Markus Stumptner and
Franz Wotawa. Coupling CSP decomposition methods
and diagnosis algorithms for tree structured systems. In
Proc. DX’03, 2003.

[Tseitin, 1983] Gregory Tseitin. On the complexity of proofs
in propositional logics. In Automation of Reasoning: Clas-
sical Papers in Computational Logic (1967–1970), vol-
ume 2. 1983.

[van Gemund, 2003] Arjan van Gemund. LYDIA version 1.1
tutorial. Technical Report PDS-2003-001, Delft University
of Technology, 2003.

[Vatan, 2002] Farrokh Vatan. The complexity of the diagno-
sis problem. Technical Report NPO-30315, Jet Propulsion
Laboratory, California Institute of Technology, 2002.

[Williams and Ragno, 2004] Brian Williams and Robert
Ragno. Conflict-directed A* and its role in model-based
embedded systems. JDAM, 2004.

