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Abstract—Due to model uncertainty and/or limited observabil-
ity, the multiple candidate diagnoses (or the associated proba-
bility mass distribution) computed by a Model-Based Diagnosis
(MBD) engine may be unacceptable as the basis for important
decision-making. In this paper we present a new algorithmic
approach, called FRACTAL (FRamework for ACtive Testing
ALgorithms), which, given an initial diagnosis, computes the
shortest sequence of additional test vectors that minimizes
diagnostic entropy. The approach complements probing and
sequential diagnosis (ATPG), applying to systems where only
additional tests can be performed by using a subset of the existing
system inputs while observing the existing outputs (called “Active
Testing”). Our algorithm generates test vectors using a myopic,
next-best test vector strategy, using a low-cost approximation of
diagnostic information entropy to guide the search. Results on
a number of 74XXX/ISCAS85 combinational circuits show that
diagnostic certainty can be significantly increased, even when
only a fraction of inputs are available for active testing.

Index Terms—Artificial Intelligence, Model-Based Diagnosis,
Troubleshooting.

I. INTRODUCTION

Model-Based Diagnosis (MBD) [1] is an area of abductive

inference that uses a system model, together with observations

about system behavior to isolate sets of faulty components

(diagnoses) that explain the observed behavior. One of the

advantages of MBD over related approaches (e.g., simulation-

based) is that MBD can cope with arbitrary degree of uncer-

tainty in the system model and in the observation. In the latter

case MBD computes all or an approximation to all diagnoses.

The number of diagnoses can be large, exponential of the

number of components in the worst-case.

This ambiguity (uncertainty) of the diagnostic result poses

a typical problem to MBD. Due to modeling uncertainty (e.g.,

weakness due to ignorance of abnormal behavior or need for

robustness) and limited number of observations (sensor-lean

systems, limited observation horizons), the failure probability

mass is distributed over multiple diagnoses. This high infor-

mation entropy of the diagnostic result makes it difficult for an

operator or a reconfiguration (planning) component to decide

with sufficient certainty.

Given a set of plausible diagnoses, in certain situations one

can devise additional tests that narrow down the ambiguity

(reduces the set of diagnoses). When measurements can be
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made this is a good way to do that [1]. However, in many

circumstances there are no provisions for sensing additional

variables (e.g., a satellite that cannot be physically reached).

In such cases, the only thing that can be done is to actively

control (a subset of) inputs, executing a part of the existing

system functionality (e.g., invoking built-in test capabilities, or

otherwise), the associated observations being used to further

narrow down the diagnostic solution space.

Under no constraints, this would mean applying a test vector

on all inputs such as in sequential diagnosis (and ATPG)

where a sequence of tests is applied to target a fault. In

many situations, however, this would too much interfere with

the system and its environment. Usually, there is a subset of

inputs, called control inputs, that can be manipulated by a

diagnostic engine to execute tests. This approach is coined

“active testing”. Loosely speaking, an active testing problem

is: given a system model and an initial observation and

diagnosis, to compute the set of input test vectors that will

minimize diagnostic ambiguity with the least number of test

vectors.

In this paper we present a framework, called FRACTAL

(FRamework for ACtive Testing ALgorithms), in which we

define active testing and present algorithms to solve the active

testing problem. Our contributions are as follows:

• We define the active testing problem and describe various

instances of the problem;

• We define diagnostic ambiguity in terms of information

entropy and propose a low-cost estimation amenable to

active testing;

• We define a stochastic, myopic strategy to solving the

active testing problem and outline an algorithm to solve

the active testing problem;

• We study the performance of our algorithm on the

74XXX/ISCAS85 combinational benchmark suite.

To the best of our knowledge, this is the first approach to

defining and solving the active testing problem, generaliz-

ing over sequential diagnosis and ATPG. Furthermore our

method is based on MBD which is beneficial in that very

few assumptions about the model and the observations are

required. Our results show that controlling a small fraction

of the inputs can reduce the number of remaining diagnoses

at a small diagnostic cost whereas a reduction of entropy

would be impossible for a passive approach. Our method is

also computationally efficient as it uses a stochastic approach

and is relevant to practice as it can be effectively used to

disambiguate faults in complex autonomous systems.

This paper is organized as follows. The section that comes



next introduces some basic MBD notions. Section IV presents

the problem of sequential MBD and the important concept

of remaining number of diagnoses. Section V introduces a

framework for active testing. What follows is a section de-

scribing algorithms for active testing. Section VII implements

the algorithms and cites some experimental results. Finally we

summarize our work and discuss future work.

II. RELATED WORK

The problem of sequential diagnosis has received consid-

erable attention in the literature. Our notion of active testing

is related to that of Pattipati et al. [2], [3], except that we

compute diagnoses rather than caching all diagnoses in a fault

dictionary, we assume all tests have identical costs, and we

assume all faults are equally likely, a priori. In addition to

that, whereas the test matrix in sequential diagnosis is fixed,

we allow part of the inputs to be supplied by the environment

in every step of the diagnostic process, which makes our

framework more suitable for online fault isolation.

Note that our task is harder than that of [3], since they

do diagnosis lookup using a fault dictionary, and still show

that the sequential diagnosis task is NP-hard; in our case we

compute a new diagnosis after every test. Hence we have an

NP-hard sequential problem interleaved with the complexity

of diagnostic inference at each step.1

The framework proposed by Pattipati et al. has been ex-

tended to an AND/OR-tree technique that is optimal [4]. We

note that optimal test sequencing is infeasible for the size of

problems in which we are interested.

Rish et al. [5], [6] define a similar framework, but cast their

models in terms of Bayesian networks. Our notion of entropy

is the size of the diagnosis space, whereas Rish et al. use

decision-theoretic notions of entropy to guide test selection.

The diagnosis framework that we propose is submodular,

in the terms described in [7], i.e., the informativeness of tests

exhibits diminishing returns the more tests that we do. In

future work we plan to compare our stochastic algorithms

to the randomized algorithms that have been developed for

submodular functions.

In comparison to all of this work, the main contributions of

our paper are:

• A model-based framework for combining multiple-fault

and sequential diagnosis and the introduction of reason-

ing with respect to modifiable/non-modifiable observable

variables;

• A characterization of diagnostic entropy in terms of the

size of the diagnosis space;

• approximating the size of the diagnosis space in terms of

the number of different observations;

• A stochastic algorithm for efficiently estimating the num-

ber of different observations and resulting diagnoses.

III. TECHNICAL BACKGROUND

Our discussion starts by adopting the relevant MBD notions

[1].

1In our case the complexity of diagnostic inference is Σp

2
-hard.

Central to MBD, a model of an artifact is represented as

a propositional Wff over a set of variables. We will discern

three subsets of these variables: assumable, observable2 and

control variables. This gives us our initial definition:

Definition 1 (Diagnostic System). A diagnostic system DS is

defined as the triple DS = 〈SD, COMPS, OBS〉, where SD is

a propositional theory over a set of variables V , COMPS ⊆ V ,

OBS ⊆ V , COMPS is the set of assumables, and OBS is the

set of observables.

Throughout this paper we assume that OBS ∩ COMPS = ∅,
and SD 6|=⊥. Furthermore, to avoid handling inconsistencies,

we restrict SD to models for which SD ∧ α 6|=⊥ for any

(possibly partial) assignment α to the variables in OBS.

A. A Running Example

We will use the Boolean circuit shown in Fig. 1 as a running

example for illustrating all notions and the algorithm shown

in this paper. The 2-to-4 line demultiplexer consists of four

Boolean inverters and four and-gates.
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Fig. 1. A demultiplexer circuit

The expression h ⇒ (o⇔ ¬i) models an inverter, where

the variables i, o, and h represent input, output, and health

respectively. Similarly, an and-gate is modeled as h ⇒
(o⇔ i1 ∧ i2 ∧ i3). The above propositional formulae are

copied for each gate in Fig. 1 and their variables subscripted

and renamed in such a way as to ensure a proper disambigua-

tion and to connect the circuit. The result is the following

propositional model:

SD =































[h1 ⇒ (a⇔ ¬p)] ∧ [h2 ⇒ (p⇔ ¬r)]
[h3 ⇒ (b⇔ ¬q)] ∧ [h4 ⇒ (q ⇔ ¬s)]
h5 ⇒ (o1 ⇔ i ∧ p ∧ q)
h6 ⇒ (o2 ⇔ i ∧ r ∧ q)
h7 ⇒ (o3 ⇔ i ∧ p ∧ s)
h8 ⇒ (o4 ⇔ i ∧ r ∧ s)

2In the MBD literature the assumable variables are also referred to as
“component”, “failure-mode”, or “health” variables. Observable variables are
also called “measurable” variables.



The assumable variables are COMPS = {h1, h2, . . . , h8} and

the observables are OBS = {a, b, i, o1, o2, o3, o4}. Note the

conventional selection of the sign of the “health” variables

h1, h2, . . . , hn. Other authors use “ab” for abnormal.

B. Diagnosis

The traditional query in MBD computes terms of assumable

variables which are explanations for the system description and

an observation.

Definition 2 (Diagnosis). Given a system DS, an observation

α over some variables in OBS, and an assignment ω to all

variables in COMPS, ω is a diagnosis iff SD ∧ α ∧ ω 6|=⊥.

We denote the set of all diagnoses of a model SD and an

observation α as Ω(SD, α) and the number of all diagnoses

as |Ω(SD, α)|. Continuing our running example, consider an

observation vector α1 = ¬a ∧ ¬b ∧ i ∧ o4. There are a total

of 256 possible assignments to all variables in COMPS and

|Ω(SD, α1)| = 200. Example diagnoses are ω1 = h1 ∧ h2 ∧
. . . ∧ h7 ∧ ¬h8 and ω2 = ¬h1 ∧ h2 ∧ h3 ∧ ¬h4 ∧ h5 ∧ h6 ∧
h7∧h8. We will write sometimes a diagnosis in a set notation,

specifying the set of negative literals only. Thus ω2 would be

represented as D2 = {¬h1,¬h4}.
As it is typical for underconstrained models to have many

diagnoses (exponential to the number of components in the

worst case, as in the above, weak, example model), we will

impose (partial) ordering on the diagnoses and will consider

only diagnoses which satisfy some minimality criterion.

Definition 3 (Cardinality of a Diagnosis). The cardinality of a

diagnosis, denoted as |ω|, is defined as the number of negative

literals in ω.

According to Def. 3, we have |ω1| = 1 and |ω2| = 2. Next,

let us focus on the diagnoses of minimal cardinality.

Definition 4 (Minimal-Cardinality Diagnosis). A diagnosis

ω≤ is defined as Minimal-Cardinality (MC) if no diagnosis

ω̃≤ exists such that |ω̃≤| < |ω≤|.

Other authors use different minimality criteria such as subset-

minimality diagnoses, probability-minimal diagnoses, kernel

diagnoses (in a slightly different diagnostic framework), etc.

[8]. Our selection of minimality criterion is such that it does

not characterize all diagnoses but is often seen in practice due

to the prohibitive cost of computing a characterizing set of

diagnoses.

Consider an observation vector α2 = ¬a∧¬b∧ i∧¬o1∧o4.

There are 6 MC diagnoses of cardinality 2 consistent with

SD ∧ α2 and counting these MC diagnoses is a common

problem in MBD.

Definition 5 (Number of Minimal-Cardinality Diagnoses).

The number of MC diagnoses of a system DS given an

observation α over some variables in OBS is denoted as

|Ω≤(SD, α)|, where Ω≤(SD, α) is the set of all MC diagnoses

of SD ∧ α.

It is easy to compute the number of MC diagnosis for the

circuit in Fig. 1: |Ω≤(SD, α1)| = 1 and |Ω≤(SD, α2)| = 6.

IV. SEQUENTIAL DIAGNOSIS

Typically, due to uncertainty in the model (e.g., ignorance

of abnormal behavior) and in the observation vectors (partial

observability), there is more than one MC diagnosis. To reduce

this uncertainty and to pinpoint the exact cause of failure,

diagnosticians often combine a sequence of diagnostic exper-

iments, where, whenever possible, appropriate input vectors

are supplied, generating tests that optimally reduce |Ω|. If this

process of successive application of MBD in time includes

dynamic reconfiguration of the system under test, then we call

the process active testing.

Definition 6 (Diagnostic Sequence). Given a system DS, a

diagnostic sequence S is defined as a k-tuple of terms S =
〈α1, α2, . . . , αk〉, where αi (1 ≤ i ≤ k) is an instantiation of

the variables in OBS.

The cost of a diagnostic sequence, denoted as |S|, is defined

as the number of terms in S (respectively the number of MBD

experiments performed by a diagnostician).

An important assumption throughout this paper is that the

health of the system under test does not change during the test

(i.e., intermittent faults are outside the scope of this study).

Assumption 1 (Non-Intermittence). Given an system DS, an

actual health state for its components ω∗, and a diagnostic

sequence S, we assume that ω∗ ∈ Ω(SD, αi) for 1 ≤ i ≤ |S|.

It is intuitive that for non-intermittent systems, the diagnos-

tician can combine the results from different application of

MBD to reduce the diagnostic uncertainty.

Lemma 1. Given a system DS, a health state for its compo-

nents ω, and a diagnostic sequence S, it follows that

ω ∈

|S|
⋂

i=1

Ω(SD, αi)

Proof: The above statement follows immediately from the

non-intermittence assumption and Def. 2.

Obviously, Lemma 1 can be applied only in the cases

in which all diagnoses of a model and an observation are

considered. If we compute minimal-diagnoses in a weak-

fault model, for example (cf. [8]), the intersection operator

has to be redefined to handle subsumptions. The problem

with intersecting diagnostic sets worsens if we consider non-

characterizing sets of diagnoses (e.g., MC diagnoses or first

n diagnoses). To solve this issue we will provide our own

consistency-based intersection operator.

Definition 7 (Consistency-Based Intersection). Given a system

description SD, an initial observation α, a (possibly non-

characterizing) set of diagnoses D of SD∧α, and a posteriori

observation α′, the intersection of D with the diagnoses

of SD ∧ α′, denoted as Ω∩(D, α′), is defined as the set

D′ (D′ ⊆ D) such that for each ω ∈ D′ it holds that

SD ∧ α′ ∧ ω 6|=⊥.

The intersection operator Ω∩(D, α) refines the set of prior

diagnoses D, leaving only diagnoses supported by both obser-

vations. It is straightforward to generalize the above definition

to a diagnostic sequence S.



Definition 8 (Remaining Minimal-Cardinality Diagnoses).

Given a diagnostic system DS and a diagnostic sequence

S, the set of remaining diagnoses ΩS is defined as ΩS =
Ω∩(Ω∩(· · ·Ω∩(Ω≤(SD, α1), α2), · · · ), αk).

It is clear that if we consider the first k terms of a sequence S
(forming a subsequence S′), the size of the set of remaining

diagnoses |ΩS
′

| decreases monotonically when increasing k.

Note that we use |ΩS
′

| instead of the more precise diag-

nostic entropy as defined in [1] and subsequent works. In

particular, if all diagnoses of a model and an observation

are of minimal-cardinality and the failure probability of each

component is the same, then the gain in the diagnostic entropy

can be directly computed from |ΩS |.

V. AN ACTIVE TESTING FRAMEWORK

Note that in our MBD use of sequential diagnosis, the

observation terms are always determined by “nature” 3. It is

often the case, though, that there are inputs (in MBD input

and outputs are normally not distinguished and they are both

considered as observables) which are not only measurable but

also modifiable. We will call these inputs controls and we will

see that computing values for these control variables can be

improve the optimality of the diagnostic process.

A. Optimal Control

Extending the diagnostic system from Def. 1 and separating

the controllable from non-controllable observations gives us

the following definition:

Definition 9 (Active Testing System). An active testing system

ATS is defined as the 4-tuple ATS = 〈SD, COMPS, CTL,

OBS〉, where SD is a propositional theory over a set of

variables V , COMPS ⊆ V , CTL ⊆ V , OBS ⊆ V , COMPS
is the set of assumables, CTL is the set of controls, and OBS
is the set of observables.

Furthermore, although this is not strictly necessary, whenever

convenient, we will be splitting the set of observables OBS
into inputs IN and outputs OUT (OBS = IN ∪ OUT, IN ∩
OUT = ∅). Hence, from now on, the observables from the

preceding sections will be split into “modifiable” inputs (or

controls) CTL, “non-modifiable” inputs IN and outputs OUT.

For the assignments to the inputs, outputs, and controls we

will conventionally use (subscripted and superscripted when

necessary) α, β, and γ, respectively.

Note the distinction between observation terms and control

terms. In a typical diagnostic scenario, the observation terms

(α1, α2, . . . , αk) are determined by “nature”, while the control

terms (γ1, γ2, . . . , γk) are set by the diagnostician.

Next, let us consider a diagnostic sequence S whose terms

are split into controls and (non-modifiable) inputs (S =

3Note, that in our presentation “sequential diagnosis” is used in the MBD
context, which is slightly different from its original presentation, but still
compatible. Normally, sequential diagnosis is the art of finding optimal test
sequences where typically all inputs are controllable, and where “nature”
is only in charge of computing the outputs. In our case, by “nature” we
understand the environment (consider the case in which the system description
is embedded within a copier that is paused).

〈α1 ∧ γ1, α2 ∧ γ2, . . . , αk ∧ γk〉). In such a sequence S, a di-

agnostician would attempt to minimize the set of the remaining

diagnoses ΩS by supplying “optimal” γi (1 ≤ i ≤ k) terms.

Ideally, there would be exactly one remaining diagnosis ω∗ at

the end of the sequence. In general, however, there may be

more, depending on the model and observability.

Problem 1 (Optimal Control Input). Given a system ATS, and

a sequence S = 〈α1 ∧ γ1, α2, . . . , αk〉, where αi (1 ≤ i ≤ k)

are OBS assignments and γ1 is a CTL assignment, compute a

minimal sequence of CTL assignments γ2, . . . , γk, such that

|ΩS | is minimized.

Problem 1 uses γ1 because our problem is different from

sequential ATPG in the sense that we don’t compute tests for

specific target diagnosis ω∗ (in which case there is no need

to have an initial control γ and observation α). In the active

testing problem, the situation is different: we target any health

state, so initial observation and control are required.

In this paper we will avoid making assumptions on the val-

ues of the observable terms α1, α2, . . . , αk. For experimenting

with active testing algorithms these can be computed from

random inputs and the propagation of the injected fault. There

is one special case, however, which is worth distinguishing:

α1 = α2 = · · · = αk (consider, e.g., a system under test which

supplies constant observation because it is stationary, paused,

pending an abort or reconfiguration, etc.).

Problem 2 (Optimal Control Input for a Persistent Input).

Given an active testing system ATS, and a sequence S =
〈α ∧ γ1, α, . . . , α〉, where |S| = k, α is an OBS assignments

and γ1 is a CTL assignment, compute a minimal sequence of

CTL assignments γ2, . . . , γk, such that |ΩS | is minimized.

In practice, a diagnostician does not know what the next

observation will be. Fully solving an active testing problem

would necessitate the conceptual generation of a tree with all

possible observations and associated control assignments in

order to choose the sequence that, on average, constitutes the

shortest (optimal) path over all possible assignments.

The sequential diagnosis problem studies optimal trees

when there is a cost associated with each test [9]. When

costs are equal, it can be shown that the optimization problem

reduces to a next best control problem (assuming one uses

information entropy). In this paper a diagnostician who is

given a diagnostic session S and who tries to compute the

next optimal control assignment would try to minimize the

expected number of remaining diagnoses |ΩS |.

B. Expected Intersection Size

Clearly, |Ω∩| is the goal function to be minimized (apart

from k). Next, we will compute the expected number of

diagnoses for a set of observable variables M (M ⊆ OBS).

Note that the initial observation α and the set of MC diagnoses

D = Ω≤(SD, α) modify the probability density function

(pdf) of subsequent outputs4 (observations), i.e., a subsequent

4In MBD there is no problem not discerning outputs from observables,
“assigning values” to outputs, etc. We leave it to the readers’ discretion to
disambiguate these from the context.



observation α′ changes its a priori likelihood. The (non-

normalized) a posteriori probability of an observation α′, given

an MC operator and an initial observation α is:

Pr(α′|SD, α) =
|Ω∩(Ω≤(SD, α), α′)|

|Ω≤(SD, α)|
(1)

The above formula comes by quantifying how a given a priori

set of diagnoses restricts the possible outputs (i.e., we take as

probability the ratio of the number of remaining diagnoses to

the number of initial diagnoses). Note that, in practice, there

are many α for which Pr(α′|SD, α) = 0 because a certain

fault heavily restricts the possible outputs of a system (i.e.,

the set of the remaining diagnoses in the nominator is empty).

The expected number of remaining MC diagnoses for a

variable set M , given an initial diagnosis α, is then the

weighted average of the intersection sizes of all possible

instantiations over the variables in M (the weight is the

probability of an output):

E≤(SD, M |α) =

∑

α′∈M∗

|Ω∩(D, α′)| · Pr(α′|SD, α)

∑

α′∈M∗

Pr(α′|SD, α)
(2)

where D = Ω≤(SD, α) and M∗ is the set of all possible

assignment to the variables in M . Replacing (1) in (2) and

simplifying gives us the following definition:

Definition 10 (Expected Minimal-Cardinality Diagnoses In-

tersection Size). Given a system ATS and an initial obser-

vation α, the expected remaining number of MC diagnoses

E≤(SD, OBS|α) is defined as:

E≤(SD, OBS|α) =

∑

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|2

∑

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|

where OBS∗ is the set of all possible assignment to all

variables in OBS.

In what follows we will compute the expected number of

remaining MC diagnoses.

VI. AN ALGORITHM FOR ACTIVE TESTING

In this section we will consider algorithms for solving the

active testing problem. We start with a description of a naı̈ve,

exact, table-based method. The memory and time requirements

of this exact method are prohibitive, hence the bulk of this

section proposes a more efficient, randomized algorithm.

A. Prohibitive Complexity of Exhaustive Search

Consider our running example with an initial observation

vector (and control assignment) α3 ∧ γ3 = a ∧ b ∧ i ∧ o1 ∧
¬o2 ∧¬o3 ∧¬o4, where γ3 = i is chosen as the initial control

input. The four MC diagnoses of SD ∧ α3 ∧ γ3 are D3 =
{¬h1,¬h3}, D4 = {¬h2,¬h5}, D5 = {¬h4,¬h5}, and D6 =
{¬h5,¬h8}.

An exhaustive algorithm would compute the expected num-

ber of diagnoses for each of the 2|CTL| next possible control

assignments. In our running example we have one control

variable i and two possible control assignments (γ5 = i and

γ6 = ¬i). To compute the expected number of diagnoses,

for each possible control assignment γ and for each possible

observation vector α, we have to count the number of initial

diagnoses which are consistent with α ∧ γ.

Computing the intersection sizes for our running example

gives us Table I. Note that, in order to save space, Table I

contains rows for those α ∧ γ only, for which Pr(α ∧ γ) 6=
0, given the initial diagnoses D3 − D6 (and, as a result,

Ω∩(Ω≤(SD, α3 ∧ γ3), α ∧ γ) 6= 0). It is straightforward to

compute the expected number of diagnoses for any control as-

signment with the help of this marginalization table. In order to

do this we have to (1) filter out those lines which are consistent

with the control assignment γ and (2) compute the sum and

the sum of the squares of the intersection sizes (the rightmost

column of Table I). To compute E(SD, OBS|α3 ∧ ¬i), for

i a b o1 o2 o3 o4 Pr |Ω∩|

F F F F F F F 0.03125 1

F F F T F F F 0.0625 2

F F F T F F T 0.03125 1

F F T F F F F 0.03125 1

F F T T F F F 0.0625 2

F F T T F F T 0.03125 1

F T F F F F F 0.03125 1

F T F T F F F 0.0625 2

F T F T F F T 0.03125 1

F T T F F F F 0.03125 1

F T T T F F F 0.0625 2

F T T T F F T 0.03125 1

T F F F F F T 0.0625 2

T F F F F T F 0.03125 1

T F F F T F F 0.03125 1

T F T F T F F 0.03125 1

T F T T F F F 0.03125 1

T F T T F T T 0.0625 2

T T F F F T F 0.03125 1

T T F T F F F 0.03125 1

T T F T T F T 0.0625 2

T T T T F F F 0.125 4

TABLE I
MARGINALIZATION TABLE FOR SD AND α3

example, we have to find the sum and the sum of the squares

of the intersection sizes of all rows in Table I for which

column i is F. It can be checked that E(SD, OBS|α3,¬i) =
24/16 = 1.5. Similarly, E(SD, OBS|α3∧i) = 34/16 = 2.125.

Hence an optimal diagnostician would consider a second

measurement with control setting γ = i.
The obvious problem with the above brute-force approach

is that the size of the marginalization table is, in the worst-

case, exponential in |OBS|. Although many of the rows in

the marginalization table can be skipped as the intersections

are empty (there are no consistent prior diagnoses with the

respective observation vector and control assignment), the

construction of this table is computationally so demanding

that we will consider an approximation algorithm (to construct

Table 1 for our tiny example, the exhaustive approach had to

perform a total of 512 consistency checks).



B. Approximation of the Expectation

Our algorithm for active testing consists of (1) a randomized

algorithm for approximating the expected number of remain-

ing diagnoses and (2) a greedy algorithm for searching the

space of control assignments. We continue our discussion with

approximating the expectation.

The key insight which allows us to build a faster method

for computing the expected number of remaining diagnoses

is that the prior observation (and respectively a set of MC

diagnoses) shifts the probability of the outputs. Hence, an

algorithm which samples the possible input assignments (it

is safe to assume that inputs are equally likely) and counts

the number of different observations given the set of prior

diagnoses would produce a good approximation. Algorithm 1

Algorithm 1 Approximate expectation

1: function EXPECTATION(ATS, γ, D) returns a real

inputs: ATS, active testing system

γ, term, system configuration

D, set of diagnoses, prior diagnoses

local variables: α, β, ω, terms

s, q, integers, initially 0
S, a set of terms, samples

Ê, a real, expectation

2: S ← ∅
3: repeat

4: α← RANDOMINPUTS(SD, IN)
5: for all ω ∈ D do

6: β ← INFEROUTPUTS(SD, OUT, α ∧ γ, ω)
7: if α ∧ β 6∈ S then

8: S ← S ∪ {α ∧ β}
9: s← s + |Ω∩(D, α ∧ β ∧ γ)|

10: q ← q + |Ω∩(D, α ∧ β ∧ γ)|2

11: Ê ← q/s
12: end if

13: end for

14: until TERMINATE(Ê)
15: return Ê
16: end function

uses a couple of auxiliary functions: RANDOMINPUTS assigns

random values to all outputs and INFEROUTPUTS computes

all outputs from the system model, all inputs and a diagnosis5.

The computation of the intersection size |Ω∩(D, α ∧ β ∧ γ)|
can be implemented in a straightforward manner. It is enough

to count those ω ∈ D for which SD ∧ α ∧ β ∧ γ ∧ ω 6|=⊥.

It can be seen that the value of the expected number of

diagnoses Ê approaches the exact value E when increasing the

number of samples |S|. In particular, Ê is the exact number

of the expected number of diagnoses when all possible input

values are considered (in the latter case Alg. 1 simply builds

the marginalization table for a given control assignment γ).

5This is not always possible in the general case. In our framework, we
have a number of assumptions, i.e., a weak-fault model, well-formed circuit,
etc. The complexity of INFEROUTPUT varies on the framework and the
assumptions.

Figure 2 shows two examples of Ê approaching E for two

bigger models (cf. Sec. VII).
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Fig. 2. Example approximations of the expectancy

The algorithm terminates when a suitable termination crite-

rion (checked by the TERMINATE function) is satisfied. In our

implementation TERMINATE returns success when the last n
iterations (where n is a small constant) leave Ê unchanged.

C. Greedy Control Setting Algorithm

In addition to the approximation for the expectation of the

number of diagnoses, we need a faster method for searching

the space of possible control assignments (the brute-force ap-

proach considers 2|CTL| control assignments). We will assume

that the control literals are independent, flip them one at a

time, and accept the new control assignment if it decreases the

expected number of remaining MC diagnoses. The approach

is shown in Alg. 2, which computes a control assignment for

a given active testing system and a prior observation. The

Algorithm 2 Optimal next control input

1: function CONTROL(ATS, α) returns a control term

inputs: ATS, active testing system

α, term, initial observation

local variables: γ, γ′, terms, control configurations

E, E′, reals, expectations

D, set of terms, diagnoses

l, literal, control literal

2: D ← Ω≤(SD, α)
3: E ← EXPECTATION(ATS, γ, D)
4: for all l ∈ γ do

5: γ′ ← FLIPLITERAL(γ, l)
6: E′ ← EXPECTATION(ATS, γ′, D)
7: if E′ < E then

8: γ ← γ′

9: E ← E′

10: end if

11: end for

12: return γ
13: end function

above algorithm computes a control assignment minimizing

the expected intersection size, given an active testing system

and an initial observation (and control assignment). The set of

initial diagnoses is computed from the initial observation in

line 2. In line 5, Alg. 2 “flips” the next literal in the current

control assignment. The auxiliary FLIPLITERAL subroutine



simply changes the sign of a specified literal in a term. After

each “flip” the expected intersection size is computed with

a call to EXPECTATION (cf. Alg. 1). If the new expected

intersection size is smaller than the current one, then the

proposed control assignment is accepted as the current control

assignment and the search continues from there.

The advantage of the greedy approach is that the number of

computations of expected number of diagnoses is linear of the

number of literals in the control assignment. This is done at

the price of some optimality (i.e., the effect of combinations

of controls is neglected). It is straightforward to turn Alg. 2

into a full heuristic search.

VII. EXPERIMENTAL RESULTS

Next we discuss an implementation of FRACTAL.

A. Experimental Framework for Active Testing

We have implemented a FRACTAL experimental frame-

work. The idea is to (1) inject a random fault and then to

(2) simulate a manifestation of this fault. Given this initial

manifestation we invoke the active testing algorithm for (3)

computing an optimal next control setting. After a control

setting is generated, the simulator generates (4) another man-

ifestation of the same fault. This allows FRACTAL to (5)

refine the set of diagnoses by intersecting them (cf. Def. 7).

Steps 3, 4, and 5 are repeated until some termination criterion

is satisfied (e.g., the set of diagnoses remains a singleton6).

Algorithm 3 Active testing algorithm

1: function ACTIVETEST(ATS) returns a sequence

inputs: ATS, active testing system

local variables: ω, term, injected diagnosis

D, set of terms, diagnoses

αi, βi, γi, (1 ≤ i ≤ k), terms

2: ω ← RANDOMFAULT(ATS)
3: α0 ← RANDOMINPUTS(SD, IN)
4: γ0 ← RANDOMCONTROLS(SD, CTL)
5: β0 ← INFEROUTPUTS(SD, OUT, α0 ∧ γ0, ω)
6: D ← Ω≤(SD, α0 ∧ β0 ∧ γ0)
7: k ← 1
8: repeat

9: αk ← RANDOMINPUTS(SD, IN)
10: γk ← CONTROL(SD, αk−1 ∧ βk−1 ∧ γk−1)
11: βk ← INFEROUTPUTS(SD, OUT, αk ∧ γk, ω)
12: D ← Ω∩(D, αk ∧ βk ∧ γk)
13: k ← k + 1
14: until TERMINATE(D)
15: return 〈α1 ∧ β1 ∧ γ1, . . . , αk ∧ βk ∧ γk〉
16: end function

Algorithm 3 uses the same auxiliary functions RANDOM-

INPUTS and INFEROUTPUTS as in Sec. VI-B. The subroutine

RANDOMCONTROLS is similar to RANDOMINPUTS except

6In this case the remaining diagnosis must be the one injected in the
beginning of the process (ω∗), which verifies the design and implementation
of our algorithms.

that it generates assignments to the variables in CTL instead

of the ones in OBS. Similarly, RANDOMFAULT generates a

random assignment to the assumable variables in COMPS.

Algorithm 3 maintains a set of remaining diagnoses in

D which are iteratively refined in line 12. The algorithm

terminates when a suitable termination criterion (checked by

the TERMINATE function) is satisfied. In our implementation

TERMINATE returns success when there is only one remaining

diagnosis in D or when the last n iterations (where n is a small

constant) leave the size of D unchanged. Note that depending

on the observability of the model (the contents of OBS), it

may never happen that D is reduced to a single diagnosis.

B. Implementation Notes and Test Set Description

We have implemented FRACTAL in approximately 1 500
lines of C code (excluding minimal-diagnosis code and con-

sistency checking) and it is a part of the LYDIA package.7

Traditionally, MBD algorithms have been tested on diag-

nostic models of digital circuits like the ones included in

the ISCAS85 benchmark suite [10]. As models derived from

the ISCAS85 circuits are computationally intensive (from a

diagnostic perspective), we have also considered four medium-

sized circuits from the 74XXX family [11].

Name Description |OBS| |COMPS| V C

74182 4-bit CLA 14 19 47 75

74L85 4-bit comparator 14 33 77 118

74283 4-bit adder 14 36 81 122

74181 4-bit ALU 22 65 144 228

c432 27-channel int. 43 160 356 514

c499 32-bit SEC 73 202 445 714

c880 8-bit ALU 86 383 826 1 112

c1355 32-bit SEC 73 546 1 133 1 610

c1908 16-bit SEC/DEC 58 880 1 793 2 378

TABLE II
AN OVERVIEW OF THE 74XXX/ISCAS85 CIRCUITS (V DENOTES THE

TOTAL NUMBER OF VARIABLES AND C IS THE NUMBER OF CLAUSES)

All time measurements in this paper are performed on a

host with 1.86 GHz Pentium M CPU and 2 Gb of RAM.

C. Performance and Optimality of Active Testing

In this experiment we compare the results of FRACTAL to

a setting where all inputs are non-modifiable and the initial

observation is repeated at every step of the sequence (cf.

Sec. V). Obviously, in the latter case, the initial number of

diagnoses can not be reduced any further. The result is shown

in the second column of Table III.

The third column of Table III shows the remaining number of

diagnoses after |S| steps (column 4 of Table III). Finally, the

rightmost column of Table III gives the time (in seconds) for

computing the remaining number of diagnoses Ω∩.

The results show that we can achieve a 25−90 % reduction

in the number of diagnoses in 1 − 8 steps. For these exper-

iments we have set the termination criterion of Alg. 3 to 3

7LYDIA is downloadable from http://fdir.org/lydia/.



Name Ω
≤

Ω
∩ |S| T [s]

74182 4 2 4 0.6

74L85 8 2 5 2.2

74283 5 3 4 1.5

74181 10 1 2 0.3

c432 10 1 2 20.6

c499 4 4 4 27.6

c880 39 8 4 443.6

c1355 5 4 4 104.1

TABLE III
COMPARISON OF NUMBER OF DIAGNOSES WITH PERSISTENT α TO ACTIVE

TESTING (|CTL| = |IN|)

iterations without changing the number of remaining diagnoses

and the precision for Alg. 1 is 0.25. The number of samples

for Alg. 1 is 25.

D. Minimal Expected Intersection Size

In the experiment that follows we will experiment with

computing the expected number of minimal diagnoses with

an initial observation only (as opposed to a longer sequence

of observations and controls). The result (shown in Table IV)

gives an indication on the effect of the control variables on

the expected number of remaining diagnoses.

We have seeded our experiments with arbitrary double

faults (or single faults for circuits larger than c1355 for

faster initial MC computation). The number of initial MC

diagnoses is shown in the second column of Table IV. Al-

though the ISCAS85/74XXX benchmark is not designed for

active testing, we have “abused” it by changing a fraction

c = |CTL|/(|CTL|+ |IN|) of the inputs to controls.

Name |Ω≤| c = 0.25 c = 0.5 c = 0.75 c = 1

74182 4 3.26 2.36 2.25 2

74L85 8 4.41 4.29 3.63 3

74283 5 3.17 2.25 2.2 2.2

74181 10 6.09 5.28 5.18 3.8

c432 10 3.08 2.93 2.55 2.4

c499 4 4 4 4 4

c880 39 21.68 16.44 15.97 12.23

c1355 5 4.06 3.4 3.4 3.4

TABLE IV
MINIMAL EXPECTED ENTROPY Ê FOR VARYING CONTROLLABILITY

(c = |CTL|/(|CTL| + |IN|))

The above experiment shows that a small number of controls

(c = 0.25) is sufficient for reducing the diagnostic uncertainty.

VIII. CONCLUSION

We have described a framework and an algorithm for

active testing, called FRACTAL. The algorithm consists of

a sampling-based method for approximating the entropy and a

greedy method for searching the next optimal control setting.

We have implemented the algorithm and experimented on a

range of combinational benchmarks. Experiments show that

controlling a small fraction of the inputs can reduce the

diagnostic uncertainty while minimizing the diagnostic cost.

We argue that active testing can be of broad practical signif-

icance, as it can reduce diagnostic uncertainty in situations in

which MBD alone is not capable of determining exact cause

of failure.

As a future work we plan to bound the error of the

randomized algorithms and to perform more experiments on

additional set of models and observation vectors. We also plan

to study the problems complexity and to improve and assess

the performance of our implementations.
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