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Abstract

Model-Based Diagnosis (MBD) typically focuses on diag-
noses, minimal under some minimality criterion, e.g., the
minimal-cardinality set of faulty components that explain an
observation a. However, for different o there may be mini-
mal-cardinality diagnoses of differing cardinalities, and sev-
eral applications (such as test pattern generation and bench-
mark model analysis) need to identify the « leading to the
max-cardinality diagnosis amongst them. We denote this
problem as a Max-Fault Min-Cardinality (MFMC) problem.
This paper considers the generation of observations that lead
to MFMC diagnoses. We present a near-optimal, stochastic
algorithm, called MIRANDA (Max-fault mIn-caRdinAlity ob-
servatioN Deduction Algorithm), that computes MFMC ob-
servations. Compared to optimal, deterministic approaches
such as ATPG, the algorithm has very low cost, allowing
us to generate observations corresponding to high-cardinality
faults. Experiments show that MIRANDA delivers optimal re-
sults on the 74X XX circuits, as well as good MFMC cardi-
nality estimates on the larger ISCASS85 circuits.

Introduction

The problem of computing minimal-cardinality diagnoses,
given an observation and a system description, is central to
Model-Based Diagnosis (de Kleer and Williams 1987). In
this paper we consider the “inverse” problem of computing
an observation that simultaneously isolates & faulty com-
ponents. These observations are useful in system testing
and benchmarking of multiple-fault diagnostic techniques.
Computing observations (in particular inputs) that distin-
guish a single failing component (k = 1) is studied by Au-
tomatic Test Pattern Generation (ATPG) and dates back to
the D-algorithm (Roth 1966). The goal of ATPG is to com-
pute a sequence of test vectors that can detect every pos-
sible single fault in a device. Single-fault ATPG has been
extended to finding observation vectors leading to double
faults (Hughes 1988) and to multiple faults (Kubiak and
Fuchs 1991). These approaches have several drawbacks,
including: (1) they do not determine the maximum possi-
ble value of k (2) they suffer from very high computational
complexity, and (3) they severely limit the class of system
abstractions by imposing various model restrictions.

Few papers have proposed algorithms computing obser-
vation vectors that distinguish the maximum number of fail-
ing components in a system (Abramovici 1981). The GUID-
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EDPROBE algorithm in the latter paper relies on probing to
achieve the maximal fault resolution for a fixed test T'. The
author of this algorithm has a different goal, i.e., achieving
maximal resolution by minimizing the number of probes,
and proposes essentially a sequential algorithm. This is
very different from MBD approaches, which try to solve the
multiple-fault problem with only one observation.

To the best of our knowledge, we are the first to formally
state the problem and significance of finding MFMC obser-
vation vectors, and then to define an algorithm that is able to
approximate such a computationally difficult problem. Our
method is based on a greedy stochastic search algorithm,
called MIRANDA (Max-fault mIn-caRdinAlity observatioN
Deduction Algorithm), and uses an MBD oracle for comput-
ing minimal-cardinality diagnoses. The algorithm is greedy
in that it monotonically exploits part of the problem search
space. The performance of our method is determined by
the efficiency of the underlying MBD engine; i.e., it is effi-
cient with a fast (usually incomplete) procedure for comput-
ing minimal-diagnoses.

One advantage of MIRANDA over related k-fault ATPG
algorithms is that it uncovers the maximum value of k. Fur-
thermore, it does not impose any limitations on the model
(e.g., it neither requires no stuck-at modes nor assumes un-
limited observability). This makes our approach applicable
not only to system testing but also to MBD benchmarking
and to a wider range of Model-Based Reasoning (MBR)
problems, such as optimal sensor placement (Console, Pi-
cardi, and Ribaudo 2000), active testing, etc. In this pa-
per the MFMC algorithm is applied to MBD benchmarking
(Provan and Wang 2007), but it can be applied to compute
a set of MFMC test vectors covering all components in a
system.

We have evaluated the performance of MIRANDA using
the ISCAS85 benchmark extended with 4 smaller circuits
from the 74XXX family. For the 74XXX circuits we have
been able to exactly compute all MEMC observation vec-
tors. Since deterministic MBD algorithms cannot compute
the high fault-cardinalities associated with MFMC vectors
for the ISCASS5 circuits, we have used a stochastic MBD
oracle (Feldman, Provan, and van Gemund 2007).

A summary of our contributions follows. This paper in-
troduces the MFMC problem and an algorithm for comput-
ing MFMC observation vectors. We empirically analyze



the algorithm on a number of diagnostic models from the
ISCASS85 and 74X XX benchmarks. We also provide an an-
alytical method for estimating MFMC fault cardinalities.
This paper is organized as follows. The next two sections
define the basic MFMC framework and MFMC algorithm,
respectively. Finally, we show empirical results of testing
the MFMC algorithm on a family of combinatorial circuits.

Technical Background

This paper uses the traditional diagnostic definitions (de
Kleer, Mackworth, and Reiter 1992), except that we use
propositional logic terms (conjunctions of literals) instead
of sets of failing components.

Central to MBD, a model of an artifact is represented as
a propositional WHF over some set of variables. Discerning
two subsets of these variables as assumable and observable'
variables gives us a diagnostic system.

Definition 1 (Diagnostic System). A diagnostic system DS
is defined as the triple DS = (SD, COMPS, OBS), where
SD is a propositional theory over a set of variables V/,
COMPS C V, OBS C V, COMPS is the set of assum-
ables, and OBS is the set of observables.

Throughout this paper we assume that OBS N COMPS = ()
and SD [~ L. Although not necessary for MBD applications,
a partitioning of OBS into an input set IN and an output set
OUT (OBS = INUOUT and INNOUT = 0) is convenient,
familiar from ATPG, and allows an easier presentation of the
MFMC algorithm.

A Running Example

We will use the Boolean circuit shown in Fig. 1 as a running
example for illustrating all the notions and algorithm in this
paper. The subtractor, shown there, consists of seven com-
ponents: an inverter, two or-gates, two xor-gates, and two
and-gates. The expression h = (0 < —i) models the nor-
mative (healthy) behavior of an inverter, where the variables
i, 0, and h represent input, output and health respectively.
Similarly, an and-gate is modeled as h = (0 < i1 A i2) and
an or-gate by h = (0 < i1 Via). Finally, an xor-gate is
specified as h = [0 & = (i1 < i2)].
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Figure 1: A subtractor circuit

'In the MBD literature the assumable variables are also referred
to as “component”, “failure-mode”, or “health” variables. Observ-
able variables are also called “measurable”, or “control” variables.

The above propositional formulae are copied for each gate in
Fig. 1 and their variables renamed in such a way as to prop-
erly connect the circuit and disambiguate the assumables,
thus obtaining a propositional formula for the Boolean sub-
tractor, given by:

hy =i & = (y < p)]
he = [de - (x <)
hs = (j < yVp)
SD=< hy=(m<IlA))
hs = (bs mVEk)

he = (z < )
hr = (k< yAp)

The assumable variables COMPS = {hq, ho, ..., hr}, the
observable variables OBS = {x,y,p,d, b}, the inputs are
IN = {z,y, p}, and the outputs OUT = {b, d}.

Diagnosis and Minimal Diagnosis

The traditional query in MBD computes terms of assumable
variables which are explanations for the system description
and an observation.

Definition 2 (Health Assignment). Given a diagnostic sys-
tem DS = (SD, COMPS, OBS), an assignment HA to all
variables in COMPS is defined as a health assignment.

A health assignment HA is a conjunction of propositional
literals. In some cases it is convenient to use the set of neg-
ative or positive literals in HA. These two sets are denoted
as Lit~ (HA) and Lit ™ (HA), respectively.

In our example, the “all nominal” assignment is HA; =
hi A ha A -+ A h7. The health assignment HA; = hy A
ha A\ hg A—hg A hs A hg A —hy means that the two and-gates
from Fig. 1 are malfunctioning. What follows is a formal
definition of consistency-based diagnosis.

Definition 3 (Diagnosis). Given a diagnostic system DS =
(SD, COMPS, OBS), an observation o over some variables
in OBS, and a health assignment w, w is a diagnosis iff SD A
aNwlEL.

There is a total of 96 possible diagnoses given SD and an
observation «; = = Ay A p A b A ~d. Example diagnoses
are wp = —|h1/\h2/\h3/\-~-/\h7andw2 = hl/\_‘hg/\
hs Ahgy N+ N hy.

In the MBD literature, a range of types of “preferred” di-
agnosis has been proposed. This turns the MBD problem
into an optimization problem. In the following definition we
consider the common subset-ordering.

Definition 4 (Minimal Diagnosis). A diagnosis w is mini-
mal if no diagnosis w’ exists such that Lit~ (w') C Lit™ (w).

Traditionally, other authors (de Kleer and Williams 1987)
arrive at minimal diagnosis by computing a minimal hitting
set of the minimal conflicts (broadly, minimal health assign-
ments incompatible with the system description and the ob-
servation), while this paper makes no use of conflicts, hence
the equivalent direct definition above.

For the model SD of the circuit shown in Fig. 1, and an
observation as = -z Ay A p A b A d, there are 8 minimal
and 61 non-minimal diagnoses. In this example, two of the
minimal diagnoses are ws = —hy A ho A hg A hy A =hs A



he A hy and wy = —h1 A ha A hg A hgy A hs A —hg A —hr.
The diagnosis ws = —hy A—hy Ahg Ahgy A—hs Ahg A7 is
non-minimal as the negative literals in w3 form a subset of
the negative literals in ws.

Definition 5 (Cardinality of a Diagnosis). The cardinality
of a diagnosis, denoted as |w|, is defined as the number of
negative literals in w.

Diagnosis cardinality gives us another partial ordering: a di-
agnosis is defined as minimal-cardinality iff it minimizes its
number of negative literals.

The cardinality of a minimal cardinality diagnosis com-
puted from a system description SD and an observation « is
denoted as MinCard(SD A «). For our example model SD
and an observation ag = x Ay Ap A —b A~d, it follows that
MinCard(SD Aag) = 2. In this particular case, all minimal
diagnoses are also minimal-cardinality diagnoses.

A minimal-cardinality diagnosis is a minimal diagnosis,
but the opposite does not hold. There are minimal diag-
noses which are not minimal-cardinality diagnoses. Con-
sider the example model SD, the observation aw, and the
two resulting minimal diagnoses w3 and w, given earlier in
this section. From the two diagnoses, only w3 is a minimal-
cardinality diagnosis.

Keeping the model SD fixed, a different observation «
may lead to a different MinCard(SD A ). This leads to our
main definition.

Definition 6 (MFMC Observation). Given a diagnostic sys-
tem DS = (SD, COMPS, OBS), an observation « is de-
fined as Max-Fault Min-Cardinality (MFMC) observation,
iff w is a minimal-cardinality diagnosis of SD A a and |w] is
maximized.

In addition to an MFMC observation, we also refer to an
MFMC diagnosis w of a model SD, which refers to any of
the diagnoses entailed by an MFMC observation a. The car-
dinality of this diagnosis is denoted as MFMC(SD) and,
next to the associated MFMC observations, this is a key
model property we seek to compute.

MFMC Algorithm

A naive approach to compute MFMC (SD) is to consider an
exhaustive algorithm. Such an algorithm would enumerate
all the 2985! instantiations of the variables in OBS; one can
easily show that only an assignments to all variables in OBS
can be an MFMC observation vector as the MFMC prob-
lem is monotonic in respect to partial observations. For each
full instantiation «r, an MBD oracle computes the associated
minimal fault cardinality.

Taking this exhaustive approach in our running example,
we compute that MFMC(SD) = 2 and that there is a total
of 9 observation vectors discerning a minimal-cardinality di-
agnosis of 2 faults (o and a3 from the preceding section are
examples of such observation vectors). From all the 32 pos-
sible observation vectors, there are 7, 16, and 9 observation
vectors leading to a nominal, single-fault, and double-fault
minimal-cardinality diagnosis, respectively.

Of course, such an exhaustive algorithm is computation-
ally infeasible. We propose a stochastic method that trades

optimality for a huge speedup, allowing very-high-k obser-
vations to be computed for very large circuits. Despite the
inherent suboptimality of the stochastic approach, we will
see in the experimental section of this paper that, for smaller
circuits from the 74X XX family, using MIRANDA results in
optimal observation vectors. The success of our stochastic
approach is that, as we will see in the experimental section,
landscapes of typical MFMC search problems have many
optima which are close or equal to the global optimum.

Alg. 1 assumes that an “all-healthy” mode of all assum-
able variables allows an input assignment to be propagated
to all outputs. This is typical for health-models of digital
circuits and for diagnosis problems.

Algorithm 1 A greedy stochastic algorithm for generation
of MFMC observation vectors
1: function CLIMB(DS, IN, OUT, N) returns a term
inputs: DS, a diagnostic system
DS = (SD, COMPS, OBS)
IN, OUT, variable sets
INUOUT = OBS,INNOUT =0
N, an integer, number of runs
local variables: 3,v,', w, R, terms
n, q, integers

{, a literal

2: n«—0

3: q—0

4: repeat

5: B <— RANDOMINPUTS(IN)

6: ~v «— CoMPUTEOUTPUTS(DS, 3, 0UT)
7: forall/ € vdo

8: ~" < FLIPLITERAL(7,1)

9: w «— FINDMCDIAGNOSIS(DS, 3 A ¥/)
10: if |w| > ¢ then
11: q — |w|
12: v —
13: R—pAY
14: end if
15: end for
16: n—n+1

17: until n < N
18: return R
19: end function

Alg. 1 performs N independent attempts (restarts), each one
starting from a random observation vector that corresponds
to nominal health. This random starting point is computed
as follows. First, the RANDOMINPUTS function assigns to
each variable in IN a random value, the resulting term is
then assigned to 8. These random inputs are then fed to
the COMPUTEOUTPUTS subroutine which assigns healthy
values to the assumable variables, and computes the values
of the variables in the output set OUT. This can be done
by using a suitable propagation method like Binary Con-
straint Propagation (Zabih and McAllester 1988). The result
of COMPUTEOUTPUTS is then assigned to 7.

Starting from this initial candidate observation 8 A ~,
Alg. 1 attempts to reduce the cardinality of a minimal-di-



agnosis consistent with an observation vector by “flipping”
the values of the output variables. This is achieved by the
auxiliary function FLIPLITERAL. At each step, the cardi-
nality of the minimal-cardinality diagnosis is computed by
a call to the MBD oracle FINDMCDIAGNOSIS. The obser-
vation leading to the highest-cardinality fault is stored and
returned as a result of the MFMC computation.

Our MBD oracle must be carefully designed, since com-
puting minimal cardinality diagnoses has a very high worst-
case complexity: given arbitrary propositional theories in
SD, the complexity of finding the cardinality of a minimal-
cardinality diagnosis is ¥¥-hard (Eiter and Gottlob 1995).
The complexity decreases by imposing restrictions on the
class of admissible system models, e.g., models with igno-
rance of abnormal behavior (de Kleer, Mackworth, and Re-
iter 1992), Horn theories, etc. For improving the speed of
MBD in the average case, the literature has discussed a num-
ber of learning (Williams and Ragno 2007) or approximation
(Feldman, Provan, and van Gemund 2007) techniques. Al-
though our MFMC algorithm is transparent to the choice of
the minimal-diagnosis oracle, the choice can be optimized
when additional information on the specific properties of the
system descriptions is available. In our implementation we
use SAFARI (Feldman, Provan, and van Gemund 2007) as
a function for computing the minimal-diagnosis. SAFARI is
a stochastic diagnostic solver which returns minimal diag-
noses as an approximation to minimal-cardinality diagnoses
but, as we will see later on, the incompleteness is compen-
sated by the superior performance of this method.

We now illustrate the workings of the greedy algorithm
on the Boolean subtractor circuit from our running example.
We will consider only one run (N = 1). The RANDOMIN-
PUTS function can return, for example, an input vector 3 =
—x A y A —p. After assuming the “all-healthy” assignment
we = h1AhaA---Ahr, the subroutine COMPUTEOUTPUTS
computes the values of the output variables as v = d A b.
Our greedy MFMC algorithm first changes the literal b in
to —b. The inputs 8 and the modified v makes an observa-
tion g = -z Ay A —p A —b A d. The FINDMCDIAGNO-
SIS function, then, computes that MinCard (SD A ay) = 1.
“Flipping” the sign of the second output variable d in v leads
to an observation as = =z Ay A = p A =b A —d. Diagnosing
SD A as results in MinCard(SD A a5) = 2. In bigger cir-
cuits, of course, “flipping” the second variable does not nec-
essarily increase the cardinality of the minimal-cardinality
diagnosis. Hence we need multiple attempts, caching the
best observation computed so far. At this point there are
no more output variables to “flip”, hence the run returns o
leading to MFMC(SD) = 2.

The number of minimal-cardinality diagnoses MIRANDA
computes is determined by the number of restarts N and the
number of output variables |OUT] in a system DS (recall
that MIRANDA “flips” only output variables). The outermost
loop of Alg. 1 performs N iterations, where in each itera-
tion exactly |OUT)| literals are “flipped”; hence, the worst-
case complexity is O(N |OUT| ©), where © is the compu-
tational complexity of a single minimal-cardinality diagno-
sis. Every time the sign of a literal is changed, MIRANDA
computes a minimal-cardinality diagnosis, which gives us

the stated complexity. In particular, with an incomplete
diagnostic oracle like SAFARI (Feldman, Provan, and van
Gemund 2007) and an incomplete BCP method for consis-
tency checking in the diagnostic procedure, the complexity
of MIRANDA becomes O(N |OUT| |[COMPS| C'), where C
is the number of clauses in the CNF representation of SD
(Zhang and Stickel 2000). This makes our algorithm appli-
cable to larger models. Component-abstraction approaches,
e.g., (Siddigi and Huang 2007), can also further increase the
size of models that can be tackled.

Experimental Results

This section discusses some results from an implementation
of the MFMC algorithm described above.

Implementation Notes and Test Set Description

We have implemented MIRANDA in approximately 1 000
lines of C code (excluding the MBD oracle code) and it is
a part of the LYDIA package. The implementation can be
downloaded from www . fdir.org.

Traditionally, MBD algorithms have been tested on diag-
nostic models of digital circuits like the ones included in
the ISCAS85 benchmark suite (Brglez and Fujiwara 1985).
As models derived from the ISCASS85 circuits are com-
putationally intensive (from a diagnostic perspective), we
have also considered four medium-sized circuits from the
74XXX family (Hansen, Yalcin, and Hayes 1999).

‘ Name ‘ Description ‘ [IN| ‘ |OUT]| ‘ H ‘ \% ‘ C"

74182 | 4-bit CLA 9 5 19 47 75
74L85 | 4-bit comparator | 11 3 33 77| 118
74283 | 4-bit adder 9 5 36 81| 122
74181 | 4-bit ALU 14 8 65| 144| 228
c432 | 27-channel int. 36 7| 160| 356| 514
c499 | 32-bit SEC 41 32| 202| 445| 714
c880 | 8-bit ALU 60 26| 383| 826|1112
c1355 | 32-bit SEC 41 32| 546|1133|1610
c1908 | 16-bit SEC/DEC| 33 25| 880|1793|2378
c2670 | 12-bit ALU 233 140111932695 | 3269
¢3540 | 8-bit ALU 50 221669 |3388|4608
c5315 | 9-bit ALU 178 123123074792 | 6693
c6288 | 32-bit multiplier | 32 32(2416|4864|7216
c7552 | 32-bit adder 207 10813512 | 7232|9656

Table 1: An overview of the 74XXX/ISCASS85 circuits (H
is the number of assumable variables, V' denotes the total
number of variables and C' is the number of clauses)

The original 74XXX/ISCASS85 circuits (cf. Table 1 for an
overview) have been translated from the Netlist format to a
representation suitable for MIRANDA. Although our method
is not restricted to a certain class of models, for the exper-
imental section in this paper we have generated weak-fault
models (i.e., models with only normal behavior defined) for
each of the 14 circuits. The construction of the weak-fault
models is the same as in our running example. In general,
weak-fault models expose higher MFMC values than mod-
els of circuits where gates are allowed to be “stuck-at”.

All time measurements in this paper are performed on a
host with 1.86 GHz Pentium M CPU and 2 Gb of RAM.



Computing MFMC Numbers and Vectors

Even after supplying MIRANDA with a state-of-the-art com-
plete diagnostic solver (Feldman and van Gemund 2006),
the only circuits amenable to exhaustively enumerating all
possible observation vectors were the ones from the 74XXX
family. The exact cardinalities of the minimal-cardinality di-
agnoses of 74182, 741.85, 74283, and 74181 are 5, 3, 5, and
7, respectively.

Instead of configuring MIRANDA with a fixed number
of restarts NV, in our first experiment we show the number
of restarts necessary for computing optimal MFMC values
for the small 74XXX circuits. For this experiment MI-
RANDA was configured with the same complete diagnostic
procedure which was used for the earlier, exhaustive exper-
iment. Our implementation of MIRANDA reached the op-
timal MFMC values after performing 1.1, 3.4, 207.7, and
174.3 restarts for the 74182, 74L.85, 74283, and 74181 cir-
cuits, respectively (the numbers are averages over 10 runs).
The large value of N for the 74283 circuit arises because it
has 2 MFMC observation vectors only. Similarly, the 74181
circuit has 456 observations, leading to an MFMC diagnosis
of cardinality 7 from a total of 22 observations.

The running time for finding the optimal 74XXX MFMC
values (averaged over 10 runs) varied from 0.01 s for the
74182 circuit to 34.2 min for 74181. The long running time
for reaching the MFMC of 74181 model comes from the
poor performance of the complete diagnostic procedure we
have used (despite the fact that we have employed a state-of-
the-art solver). This is not surprising, considering that the
computational cost of finding a k-minimal-cardinality diag-
nosis increases with k.

N=1 N = 256
Name | Time [s] | MFMC MFMC | MFMC.
74182 0.005 5 5 4.72
74185 0.007 3 3 2.65
74283 0.011 3 5 4.11
74181 0.038 6 7 6.28
c432 0.135 3 8 5.59
c499 0.944 14 22 22.07
c880 2.458 16 26 17.97
c1355 5.069 9 21 22.07
c1908 9.622 10 21 17.24
2670 97.332 15 32 37.17
¢3540 30.061 19 21 16.87
c5315 | 315.475 41 55 47.12
6288 84.069 6 12 16.83
¢7552 | 594.304 22 42 46.19

Table 2: MFMC of the benchmark circuits and total number
of tests for multiple-fault diagnosis

To overcome the complexity of using a complete diagnos-
tic procedure, in the rest of our experiments, we have used
the incomplete SAFARI algorithm, which is virtually in-
sensitive to k£ (Feldman, Provan, and van Gemund 2007).
The stochastic MBD oracle dramatically increases the per-
formance of MIRANDA, at the price of overestimating the
cardinality of a minimal-cardinality diagnosis. While SA-

FARI returns minimal diagnoses, they are not necessarily
minimal-cardinality diagnoses. To some extent the opti-
mistic MFMC values from SAFARI compensate for the pes-
simistic effect of the limited number of MIRANDA retries,
but still cause MIRANDA to produce optimistic MFMC val-
ues for the ISCASS85 circuits. A procedure to estimate the
actual MFMC values is presented in the next section.

Table 2 shows the MFMC data and run times using MI-
RANDA and SAFARI. The second and third columns mea-
sure the time for executing one run (N = 1) and the MFMC
value reached during this run, respectively. It is visible that,
even with one random climb, the MFMC values are in the
worst case within 50% of the best MFMC values we have
found. These best MFMC values, shown in the fourth col-
umn of Table 2, are computed given 256 restarts. The large
number of restarts was necessary for creating a model-based
diagnosis benchmark (which is not discussed in this paper).
Note that, for the 74XXX models, the MFMC values com-
puted with MIRANDA and SAFARI are the same as the global
optima when N = 256 and within 60% of the global optima
when N = 1. The rightmost column of Table 2 is a lower
bound of the optimal MFMC value, computed by using an
alternative method which we will discuss in the next section.

MFMUC Error Bounds for Large Circuits

This section describes an alternative method for estimating
the MFMC of a circuit, which overcomes the imprecision of
our MFMC vectors. MFMC imprecision arises due to two
reasons: the stochastic nature of MIRANDA, and the fact that
S AFARI returns approximations to minimal-cardinality diag-
noses. Although the method described below does not find
the actual MFMC vectors, it can be very precise depending
on the circuit topology.

Given a system DS, we denote as g(DS) the pdf of the
minimal-cardinalities of the diagnoses of all observations in
DS. From G we can compute the MFMC value and the num-
ber of MEMC observation vectors in DS. In what follows we
will see that a normal distribution can be used as an approx-
imation to G for a large class of DS.

To describe our error bounds, we focus on the partitioned
observation vector « = IN U OUT. Given an observa-
tion « leading to a k-fault minimal diagnosis, we associate a
nominal-diagnosis observation «,,, which may differ from «
only in the OUT sub-vector. The number of OUT-values in
which « and «,, differ is called the distance of o, D(SD, «).
If n = |OUT] is the number of output variables in SD, then
starting from any nominal observation «,,, there are ,,C}
ways to select a distance-k vector «, each of which corre-
sponds to a diagnosis. In the case where each such diagnosis
is a minimum cardinality diagnosis, g(SD) is binomially-
distributed. This is true given some assumptions on the
model SD (e.g., SD is a weak-fault model of a deterministic
Boolean circuit).

Although the above model is an approximation, it pro-
vides useful bounds on MFMC errors. For the 74XXX and
ISCASS85 benchmarks, the fraction of “m-flips” resulting in
minimal-cardinality diagnoses of cardinality smaller than m
is relatively small and does not vary significantly for differ-
ent m.
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Figure 2: 74XXX minimal-cardinalities pdf

Figure 2 shows a histogram of the true minimal-diagnosis
cardinalities for the four 74X XX circuits for which we have
exhaustively determined g(DS), fitted by a normal distri-
bution N (o, 1), denoted f(x) (« is the minimal-cardinal-
ity). From f(0) and f(1) it is possible to compute unique
values for p and o (in practice, we use a numeric method
for doing that). Knowing f, the MFMC estimate of the
model approximated by f is given? by f~1(£(0)) for which
FHf(0)) #0.

It is possible to determine f(0) analytically. For any
circuit realizing a deterministic Boolean function with dis-
joint inputs and outputs, i.e., OBS = IN N OUT and
IN N OUT = (), it holds that |[{a : D(a) = 0}| = 2™/,
These input values produce exactly 2!™! different observa-
tions, hence f(0) = 2/INI /210BS| — 2=IOUT| Finding f(1)
is more difficult, and we estimate it by taking .S samples of
D(DS, ) = 2, and determining the fraction of single fault
diagnoses from them. If this fraction is denoted as z, then
f(1) = z|]oUT| 2N,

The MFMC estimates, computed with the method out-
lined above for S = 1000, are shown in the rightmost
column of Table 2. We can see that for the 74XXX cir-
cuits the approximation is within 18%, and that the MFMC
lower bound values computed by combinatorial counting are
within 69% of the MFMC values returned by MIRANDA
for ISCASS85. This gives us an estimate of the error which
comes from using the suboptimal SAFARI algorithm as an
MBD oracle.

Conclusion

This paper introduced the problem of computing MFMC ob-
servation vectors and suggested a greedy stochastic algo-
rithm for computing such vectors. Our algorithm is very
efficient, given a fast subroutine for computing the cardinal-
ity of a minimal-cardinality diagnosis. The MFMC of real-

2f~! is a multi-valued function which has two values in f(0).

world systems is an important property quantifying the di-
agnosability of a model, as it shows the maximum number
of malfunctioning components that can be distinguished ob-
serving a set of variables. We have empirically demonstrated
MIRANDA on a number of 74XXX/ISCAS85 combinatorial
circuits, computing the MFMC of these circuits.

In future work we plan to study the coverage of the
MFEFMC observation vectors, in order to compare MFMC-
based methods to classical ATPG methods.
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