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Abstract

Most algorithms for computing diagnoses within a model-
based diagnosis framework are deterministic. Such algo-
rithms guarantee soundness and completeness, but are Lf -
hard. To overcome this complexity problem, which pro-
hibits the computation of high-cardinality diagnoses for large
systems, we propose a novel approximation approach for
multiple-fault diagnosis, based on a greedy stochastic al-
gorithm called SAFARI (StochAstic Fault diagnosis Algo-
RIthm). We prove that SAFARI can be configured to com-
pute diagnoses which are of guaranteed minimality under
subsumption. We analytically model SAFARI search as a
Markov chain, and show a probabilistic bound on the min-
imality of its minimal diagnosis approximations. We have
applied this algorithm to the 74XXX and ISCASS85 suites
of benchmark combinatorial circuits, demonstrating order-of-
magnitude speedups over two state-of-the-art deterministic
algorithms, CDA* and HA™, for multiple-fault diagnoses.

Introduction

Model-Based Diagnosis (MBD) is an area of abductive in-
ference that uses a system model, together with observations
about system behavior, to isolate sets of faulty components
(diagnoses) that explain the observed behavior, according to
some minimality criterion. The standard MBD formaliza-
tion (Reiter 1987) frames a diagnostic problem in terms of a
set of logical clauses that include mode-variables describing
the nominal and fault status of system components; from this
the diagnostic status of the system can be computed given an
observation (OBS) of the system’s sensors. MBD provides a
sound and complete approach to enumerating multiple-fault
diagnoses, and exact algorithms can guarantee finding a di-
agnosis optimal with respect to the number of faulty compo-
nents, probabilistic likelihood, etc.

The biggest challenge (and impediment to industrial de-
ployment) is the computational complexity of the MBD
problem. The MBD problem of isolating multiple-fault di-
agnoses is known to be X} -complete for arbitrary proposi-
tional models (Eiter and Gottlob 1995), and X¥-complete
for Horn propositional models (Bylander et al. 1991;
Friedrich, Gottlob, and Nejdl 1990). Since almost all pro-
posed MBD algorithms have been complete and exact, with
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some authors proposing possible trade-offs between com-
pleteness and faster consistency checking (Williams and
Ragno 2007) by employing methods such as Binary Con-
straint Propagation (BCP), the complexity problem still re-
mains a major challenge to MBD.

To overcome this complexity problem, we propose a
novel approximation approach for multiple-fault diagnosis,
based on a stochastic algorithm. SAFARI (StochAstic Fault
diagnosis AlgoRIthm) sacrifices guarantees of optimality,
but for diagnostic systems in which faults are described in
terms of an arbitrary deviation from nominal behavior SA-
FARI can compute diagnoses several orders of magnitude
faster than competing algorithms.

Our contributions are as follows. (1) This paper intro-
duces an approximation algorithm for computing diagnoses
within an MBD framework, based on a greedy stochastic
algorithm. (2) We show that we can compute minimal-
cardinality diagnoses for weak fault models in poly-time
(calling the incomplete SAT-solver BCP), and that more gen-
eral frameworks are also amenable to this class of algo-
rithm. (3) We model SAFARI search as a Markov chain to
show the performance and optimality trade-offs that the al-
gorithm makes. (4) We apply this algorithm to a suite of
benchmark combinatorial circuits, demonstrating order-of-
magnitude speedup over two state-of-the-art deterministic
algorithms, CDA* and HA*, for multiple-fault diagnoses.
Moreover, whereas the search complexity for the determin-
istic algorithms tested increases exponentially with fault car-
dinality, the search complexity for this stochastic algorithm
appears to be independent of fault cardinality. SAFARI is of
great practical significance, as it can compute a large frac-
tion of cardinality-minimal diagnoses for discrete systems
too large or complex to be diagnosed by existing determin-
istic algorithms.

Related Work

MBD inference can be viewed as constraint optimization,
with particular constraints over failure variables, as we will
describe. MBD has developed algorithms to exploit these
domain properties, and our proposed approach differs sig-
nificantly with almost all MBD algorithms that appear in
the literature. While most advanced MBD algorithms make
use of preferences, e.g., fault-mode probabilities, to improve
search efficiency, the algorithms themselves are determinis-



tic, and use the preferences to identify the most-preferred
solutions. This contrasts with stochastic SAT algorithms,
which rather than backtracking may randomly flip variable
assignments to determine a satisfying assignment.

At first glance, it seems like MBD could be efficiently
solved using an encoding as a SAT (Jin, Han, and Somenzi
2005), constraint satisfaction (Freuder et al. 1995) or
Bayesian network (Kask and Dechter 1999) problem. How-
ever, one needs to take into account the increase in formula
size (over a direct MBD encoding), in addition to the un-
derconstrained nature of MBD problems. The most closely-
related SAT encoding is that of Vatan et al. (Vatan et al.
2003), who map the diagnosis problem into the monotone
SAT problem, and then propose to use efficient SAT algo-
rithms for computing diagnoses. The approach of Vatan et
al. has shown speedups in comparison with other diagno-
sis algorithms; the main drawback is the number of extra
variables and clauses that must be added in the SAT encod-
ing, which is even more significant for strong fault mod-
els and multi-valued variables. In contrast, our approach
works directly on the given diagnosis model and requires
no conversion to another representation. In the experimental
analysis section, we show that a straightforward ALLSAT
encoding (Jin, Han, and Somenzi 2005) compares very un-
favourably with SAFARI, since standard SAT inference does
not exploit particular MBD domain properties.

Technical Background

Our discussion continues by formalizing some MBD no-
tions. This paper uses the traditional diagnostic definitions
(de Kleer and Williams 1987), except that we use proposi-
tional logic terms (conjunctions of literals) instead of sets of
failing components.

Central to MBD, a model of an artifact is represented as
a propositional WHF over some set of variables. Discerning
two subsets of these variables as assumable and observable'
variables gives us a diagnostic system.

Definition 1 (Diagnostic System). A diagnostic system DS
is defined as the triple DS = (SD, COMPS, OBS), where
SD is a propositional theory over a set of variables V,
COMPS C V, OBS C V, COMPS is the set of assum-
ables, and OBS is the set of observables.

Throughout this paper we assume that OBS N COMPS = ()
and SD (L. Although SAFARI delivers good results for a
larger class of diagnostic models, this paper focuses on the
well-known weak-fault models.

Definition 2 (Weak-Fault Model). A diagnostic system
DS = (SD, COMPS, OBS) belongs to the class WFM iff
SD is in the form (hy = F1) A ... A (hy, = F),) such that
1<i,j<n,{h;} C COMPS, F; € WIE, and none of h;
appears in .

Note the conventional selection of the sign of the “health”
variables hq, hs, ... h,. Other authors use “ab” for abnor-
mal or “ok” for healthy. Weak-fault models are sometimes

'In the MBD literature the assumable variables are also referred
to as “component”, “failure-mode”, or “health” variables. Observ-
able variables are also called “measurable”, or “control” variables.

referred to as models with ignorance of abnormal behavior
(de Kleer, Mackworth, and Reiter 1992), or implicit fault
systems. The traditional query in MBD computes terms of
assumable variables which are explanations for the system
description and an observation.

A Running Example

We will use the Boolean circuit shown in Fig. 1 as a running
example for illustrating all the notions and algorithms in this
paper. The subtractor, shown there, consists of seven com-
ponents: an inverter, two or-gates, two xor-gates, and two
and-gates. The expression h = (0 < —i) models the nor-
mative (healthy) behavior of an inverter, where the variables
i, 0, and h represent input, output and health respectively.
Similarly, an and-gate is modeled as h = (0 < i1 A i3) and
an or-gate by h = (0 < i1 Viy). Finally, an xor-gate is
specified as h = [0 < = (i1 < i2)].
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Figure 1: A subtractor circuit

The above propositional formulae are copied for each gate in
Fig. 1 and their variables renamed in such a way as to prop-
erly connect the circuit and disambiguate the assumables,
thus obtaining a propositional formula for the Boolean sub-
tractor, given by:

hi=[ie - (y<p)
he = [d & - (x 1)
hs = (j < yVp)
SD=< hy= (m<IlA)) 1)
hs = (b<e mVk)
he = (z < )
h7 = (k< yAp)

The set of assumables is COMPS = {hq, ha,...,h7} and
the set of observable variables is OBS = {z, y, p, d, b}.

Diagnosis and Minimal Diagnosis

The traditional query in MBD computes terms of assumable
variables which are explanations for the system description
and an observation.

Definition 3 (Health Assignment). Given a diagnostic sys-
tem DS = (SD, COMPS, OBS), an assignment HA to all
variables in COMPS is defined as a health assignment.

A health assignment HA is a conjunction of propositional
literals. In some cases it is convenient to use the set of neg-
ative or positive literals in HA. These two sets are denoted
as Lit~ (HA) and Lit ™ (HA), respectively.



In our example, the “all nominal” assignment is HA; =
hi A ha A ... A hy. The health assignment HAs = hy A
ho A hs A—=hy A\ hs A hg A —h7 means that the two and-gates
from Fig. 1 are malfunctioning. What follows is a formal
definition of consistency-based diagnosis.

Definition 4 (Diagnosis). Given a diagnostic system DS =
(SD, COMPS, OBS), an observation o over some variables
in OBS, and a health assignment w, w is a diagnosis iff SD A
aNwlEL.

Traditionally, other authors (de Kleer and Williams 1987)
arrive at minimal diagnosis by computing a minimal hitting
set of the minimal conflicts (broadly, minimal health assign-
ments incompatible with the system description and the ob-
servation), while this paper makes no use of conflicts, hence
the equivalent direct definition above.

There is a total of 96 possible diagnoses given SD and an
observation a; = z Ay Ap AbA—d. Example diagnoses are
w1 = _‘hl /\hg/\. . ./\h7 andwg = hl/\_‘hg/\hg/\. . ./\h7.
Trivially, given a weak-fault model, the “all faulty” health
assignment (in our example HA3 = —hi A—haA...A—hr)is
a diagnosis for any instantiation of the observable variables
in OBS (cf. Def. 2).

In the MBD literature, a range of types of “preferred” di-
agnosis has been proposed. This turns the MBD problem
into an optimization problem. In the following definition we
consider the common subset-ordering.

Definition 5 (Minimal Diagnosis). A diagnosis w is mini-
mal if no diagnosis w’ exists such that Lit~ (w’) C Lit™ (w).

For the weak-fault model SD of the circuit shown in Fig. 1
and an observation ay = —x Ay A p A =b A d there are
8 minimal and 61 non-minimal diagnoses. In this example,
two of the minimal diagnoses are ws = —hy Aha Ahs Ahy A
ﬂh5/\h6/\h7andw4 = _‘hl/\hg/\.../\h5/\_|h,6/\_‘h7.
The diagnosis ws = —hy A—ha Ahg Ahg A—hs Ahg Ay is
non-minimal as the negative literals in ws form a subset of
the negative literals in ws.

The set of all minimal diagnoses characterizes all diag-
noses given a weak-fault model, but that does not hold in
general (de Kleer, Mackworth, and Reiter 1992). With no
restrictions on the model, faulty components may “exoner-
ate” each other, resulting in a health assignment containing
a proper superset of the negative literals of another diagnosis
not to be a diagnosis.

Diagnosis cardinality gives us another partial ordering: a
diagnosis is defined as minimal cardinality iff it minimizes
the number of negative literals.

Definition 6 (Cardinality of a Diagnosis). The cardinality
of a diagnosis, denoted as |w|, is defined as the number of
negative literals in w.

A minimal cardinality diagnosis is a minimal diagnosis, but
the opposite does not hold. There are minimal diagnoses
which are not minimal cardinality diagnoses.

Stochastic MBD Algorithm

In this section we discuss an algorithm for computing
multiple-fault diagnoses using stochastic search.

A Simple Example (Continued)

We will now show a two-step diagnostic process. Step 1
involves randomly choosing candidates. Step 2 attempts to
minimize the fault cardinality in these candidates.

In step 1, the stochastic diagnostic search for the subtrac-
tor example will start from a random quintuple candidate?.
In this particular version of our algorithm, once a compo-
nent is marked as healthy, it cannot be changed back to
faulty. To compensate for that, we perform multiple restarts
from a random candidate. In our subtractor example and
forag = x Ay Ap A —dA —b, if hy A hy is in an initial
“guessed” candidate, it will prove inconsistent with SD A a3
and another quintuple fault candidate will be guessed.

Assume that this second candidate is wg = —h1 A —hg A
hg N _‘h4 A _|h,5 N h,g N _‘h7. Clearly, SD A a3 N\ weg béJ_
The search algorithm may next try to improve the diagnosis
by “flipping” the sign of h7. The candidate w; = —hy A
—hg A hg A —=hg A =hs A hg A hy is a valid quadruple fault
diagnosis and it can be improved twice more by “flipping”
ho and hs. This gives us the final double-fault wg = —hy A
ha A hs A =hg A hs A hg N\ hy. The actual algorithm is
somewhat more involved as during the variable flipping it
is normal to find inconsistencies. Instead of restarting, it
will simply discard these inconsistent candidates until some
termination criterion is satisfied.

Intuitively, from our example, due to the large number of
double fault diagnoses explaining the same observation, it is
not difficult to randomly guess sequences of variables which
need to be false in order to explain the observation.

A Greedy Stochastic Algorithm

A number of utility functions are used in the pseudocode
listed in this paper. The IMPROVEDIAGNOSIS subroutine
takes a term as an argument and changes the sign of a ran-
dom negative literal. If there are no negative literals, the
function returns the original argument. The implementa-
tion of RANDOMDIAGNOSIS uses a modified DPLL solver
(Davis, Logemann, and Loveland 1962) returning a random
SAT solution of SD A « (cf. the experimental results section
for implementation details).

Similar to deterministic methods for MBD, SAFARI uses
a SAT-based procedure for checking the consistency of SD A
aAw. Because SD Aa does not change during the search, the
incremental nature of the Logic-Based Truth Maintenance
System (LTMS) assumption checking (McAllester 1990)
greatly improves the search efficiency. The implementation
of SAFARI combines a BCP-based LTMS to check for incon-
sistencies. If a candidate is consistent, a subsequent DPLL-
based check is invoked for completeness.

The randomized search process performed by SAFARI
has two parameters, M and N. There are N independent
searches that start from randomly generated starting points.
The algorithm tries to improve the cardinality of the initial
diagnoses (while preserving their consistency) by randomly
“flipping” fault literals. The change of a sign of literal is
done in one direction only: from faulty to healthy.

YIn the formal description of the algorithm we describe a
method for determining the initial candidates.



Algorithm 1 SAFARI: A greedy stochastic hill climbing al-
gorithm for approximating the set of minimal diagnoses.
1: function HILLCLIMB(DS, o, M, N) returns a trie
inputs: DS = (SD, COMPS, OBS), diag. system
«, term, observation
M, integer, climb restart limit
N, integer, number of tries

2 n«—0

3 while n < N do

4: w < RANDOMDIAGNOSIS(SD, )
5 m «— 0

6: while m < M do

7 w’ < IMPROVEDIAGNOSIS (w, p)
8 if SD A aAw' (=L then

9: w— w
10: m <« 0
11: else
12: m—m—+1
13: end if
14: end while
15: unless ISSUBSUMED(R, w) then
16: ADDTOTRIE(R, w)
17: REMOVESUBSUMED(R, w)
18: end unless
19: n+—n-+1
20: end while
21: return R

22: end function

Each attempt to find a minimal diagnosis terminates after
M unsuccessful attempts to “improve” the current diagnosis
stored in w. Thus, increasing M will lead to a better ex-
ploitation of the search space and, possibly, to diagnoses of
lower cardinality, while decreasing it will improve the over-
all speed of the algorithm.

It is possible two diagnostic searches to result in the same
minimal diagnosis. To prevent this, we store the generated
diagnoses in a trie R (Forbus and de Kleer 1993), from
which it is straightforward to extract the resulting diagnoses
by recursively visiting its nodes. A diagnosis w is added to
the trie R by the function ADDTOTRIE, iff no subsuming
diagnosis is contained in R (the ISSUBSUMED subroutine
checks on that condition). After adding a diagnosis w to the
resulting trie R, all diagnoses contained in 12 and subsumed
by w are removed by a call to REMOVESUBSUMED.

Optimality Analysis
This section shows that our algorithm can be configured to
guarantee finding a minimal diagnosis in weak fault mod-
els in polynomial time (given a SAT oracle such as BCP).
We also show that SAFARI trades off optimality for speed or
for more general diagnostic framework, such as strong-fault
models.

Optimality Guarantee

The hypothesis which comes next is well-studied in prior
work (de Kleer, Mackworth, and Reiter 1992) as it deter-

mines the conditions in which minimal diagnoses represent
all diagnoses of a model and an observation. This paper is
interested in the hypothesis from the computational view-
point: it defines a class of models for which it is possible
to establish a theoretic bound on the optimality and perfor-
mance of SAFARI.

Hypothesis 1 (Minimal Diagnosis Hypothesis). Let DS =
(SD, COMPS, OBS) be a diagnostic system and w’ a diag-
nosis for an arbitrary observation . The Minimal Diagnosis
Hypothesis (MDH) holds in DS iff for any health assignment
w such that Lit™ (w) D Lit™ (w’), it holds that w is also a
diagnosis.

It is easy to show that MDH holds for all weak-fault mod-
els. There are other theories SD ¢ WFM for which MDH
holds (e.g., one can directly construct a theory as a conjunc-
tion of terms for which MDH to hold). Unfortunately, no
necessary condition is known for MDH to hold in an arbi-
trary SD. The lemma which comes next is a direct conse-
quence of MDH and weak-fault models.

Lemma 1. Given a system DS = (SD, COMPS, OBS),
SD € WFM, and a diagnosis w for some observation a, it
Sollows that w is non-minimal iff another diagnosis w' can be
obtained by changing the sign of exactly one negative literal
inw.

Proof (Sketch). From Def. 2 and SD € WFM, it follows
that if w is a minimal diagnosis, any diagnosis w’ obtained
by flipping one positive literal in w is also a diagnosis. Ap-
plying the argument in the other direction gives us the above
statement. O

Our greedy algorithm starts with an initial diagnosis and
then randomly flips faulty assumable variables. We now use
the MDH property to show that, starting with a non-minimal
diagnosis w, the greedy stochastic diagnosis algorithm can
monotonically reduce the size of the “seed” diagnosis to
obtain a minimal diagnosis through appropriately flipping
a fault variable from faulty to healthy; if we view this flip-
ping as search, then this search is continuous in the diagnosis
space.

Proposition 1 (Minimal Diagnosis Guarantee). Given a di-
agnostic system DS = (SD, COMPS, OBS), an observa-
tion o, and SD € WFM, the greedy stochastic algorithm
can be configured to compute a minimal diagnosis.

Proof. Let us configure Alg. 1 with M = |COMPS]|. The
diagnosis improvement loop starts, in the worst case, from
a health assignment w which is a conjunction of negative
literals only. Necessarily, in this case, w is a diagnosis as
SD € WFM. A diagnosis w’ that is subsumed by w would
be found with at most M consistency checks (provided that
w' exists) as M is set to be equal to the number of liter-
als in w and there are no repetitions in randomly choosing
of which literal to flip next. If, after trying all the negative
literals in w, there is no diagnosis, then from Lemma 1 it
follows that w is a minimal diagnosis.

Through a simple inductive argument, we can continue
this process until we obtain a minimal diagnosis. o



From Proposition 1 it follows that there is a an upper bound
of |COMPS|? consistency checks for finding a single min-
imal diagnosis. In most of the practical cases, however, we
are interested in finding an approximation to a// minimal di-
agnoses. As a result the complexity of the optimally config-
ured SAFARI algorithm becomes O(|COMPS|2S), where S
is the number of minimal diagnoses for the given observa-
tion. The number of assumable variables in a system of prac-
tical significance may exceed thousands, rendering an opti-
mally configured SAFARI computationally too expensive. In
the next section we show that while it is more computation-
ally efficient to configure M < |COMPS], it is still possible
to find a minimal diagnosis with high probability.

Performance and Optimality Trade-Offs

In contrast to deterministic algorithms, in the SAFARTI algo-
rithm there is no absolute guarantee that the optimum solu-
tion (minimal diagnosis) is found. Below we will provide an
intuition behind the performance of the SAFARI algorithm
by means of an approximate, analytical model that estimates
the probability of reaching a diagnostic solution of specific
minimality for weak-fault models. We will start by consid-
ering a single run of the algorithm without retries where we
will assume the existence of only one minimal diagnosis.
Next, we will extend the model by considering retries. Fi-
nally, we take into account the fact that there usually is a
large number of minimal diagnoses.

Basic Model Consider DS = (SD, COMPS, OBS) such
that SD € WFM and an observation « such that & mani-
fests only one minimal diagnosis w. For the argument that
follows we will configure SAFARI with M = 1 and we will
assume that the starting solution is the trivial “all faulty” di-
agnosis.

When SAFARI randomly chooses a faulty variable and
flips it, we will be saying that it is a “success” if the new can-
didate is a diagnosis and, a “failure” otherwise. Let k£ denote
the number of steps that the algorithm successfully traverses
in the direction of the minimal diagnosis of cardinality |w|.
Thus k also measures the number of variables whose values
are flipped from faulty to healthy in the process of climbing.

Let f(k) denote the pdf of k. In the following we derive
the probability p(k) of successfully making a transition from
k to k + 1. A diagnosis at step k has k positive literals
and still [COMPS| — k negative literals. The probability of
the next variable flip being successful equals the probability
that the next negative to positive flip out of the |[COMPS| —
k negative literals does not conflict with a negative literal
belonging to a diagnosis solution w. Consequently, of the
|w| — k literals only COMPS| — |w| — k literals are allowed
to flip, and therefore the success probability equals:

_ |COMPS| — |w| — k |w]

p (k) |COMPS| — k icomps =k @

The search process can be modeled in terms of the Markov
chain depicted in Fig. 2, where k equals the state of the al-
gorithm. Running into an inconsistency is modeled by the
transitions to the state denoted “fail”.

PEES
i ’ N -1
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\ ’

1 —p(0) 1—p(i+1)

Figure 2: Model of a SAFARI run for M = 1 and a single
diagnosis w (n = |COMPS| — |w|)

The probability of exactly attaining step k (and subsequently
failing) is given by:

k

fk) = (1 =plk+1) [ ]r() ©)

i=0
After substituting (2) in (3) we receive the pdf of k:

k

_ |w] |w]
J(k) = |COMPS| — k +1 I1 {1 ~ |COMPS| —J @

=0

At the optimum goal state k = |COMPS| — |w| the failure
probability term in (4) is correct as it equals unity.

If p were independent of k, f would be according to a
geometric distribution, which implies that chances of reach-
ing the goal state k = |COMPS| — |w| are slim. However,
the fact that p decreases with k¥ moves probability mass to
the tail of the distribution, which works in favor of reaching
higher-k solutions. For instance, for single-fault solutions
(lw| = 1) the distribution becomes uniform. Fig. 3 shows
the pdf for problem instances with [COMPS| = 100 for an
increasing fault cardinality |w|.

o =1
lof =5
|o| = 10

0 20 40 60 80 100

Figure 3: Empirical (left) and analytic (right) f(k) for no
retries and a single diagnosis

In the next section we show that retries will further move
probability mass towards the optimum, providing the in-
creasing distribution tail, needed for (almost always) reach-
ing optimality.

Modeling Retries In this section we extend the model to
account for retries, which has a profound effect on the re-
sulting pdf of f. Again, consider the transition between
step £ and k + 1 where the algorithm can spend up to
m = 1,..., M retries before bailing out. As can be seen
by the algorithm (cf. Alg. 1), when a variable flip produces
an inconsistency a retry is executed while m is incremented.



From basic combinatorics we can compute the probabil-
ity of having a diagnosis after flipping any of M different
negative literals at step k. Similar to (2), at stage k there
are |COMPS| — k faulty literals from which M are chosen
(as variable “flips” leading to inconsistency are recorded and
not attempted again, there is no difference between choosing
in advance or one after another the M variables). The prob-
ability of advancing from stage k to stage k£ + 1 becomes:

(57)

p(k)=1- UCOMipSHC) (&)
M

The progress of SAFARI can be modeled for values of M >
1 as a Markov chain, similar to the one shown in Fig. 2 with
the transition probability of p replaced by p’. The resulting
pdf of the number of successful steps becomes:

|| k ||
fk) = Mnﬁﬁ%n ll—%] (©)
M i=0 M

It can be seen that (4) is a private case of (6) for M = 1. The
retry effect on the shape of the pdf is profound. Whereas for
single-fault solutions the shape for M = 1 is uniform, for
M = 2 most of the probability mass is already located at the
optimum k& = |COMPS| — |w|. Fig. 4 plots f for a number
of problem instances with increasing M. As expected, the
effect of M is extremely significant. Note that in case of the
real system, for M = |COMPS| the pdf would consist of a
single, unit probability spike at [COMPS| — |w]|.

M=2 M=2
0.04 0.04
|of=5 lo|=5
|o| =10 lo =10
0.03 0.03
< 002 £ 0.02
0.01 0.01
0 0
0 20 40 60 80 100 0 20 40 60 80 100
K k
M=4 M=4
0.12 012
|of=5 lo|=5
0.1 o] =10 0.1 ol = 10
0.08 0.08
£ 006 £ 006
0.04 0.04
0.02 0.02
0 0

Figure 4: Empirical (left) and analytic (right) f (k) for mul-
tiple retries and a single diagnosis

Although the above transition model is not amenable to
analytic treatment, the graphs immediately shows that for
large M the probability of moving to k = |COMPS| — |w|
is very large indeed. Hence, for reasonable values of M
relative to |[COMPS)| the pdf has a considerable probability
mass located at k = [ COMPS| — |w|.

Thus far, we have only considered a single solution. In
general, however, depending on the observation, there are

many minimal diagnoses, with all of them or a fraction being
of minimal cardinality.

Experimental Results

This section discusses empirical results measured from an
implementation of SAFARI. For the experiments, we have
performed a total of 131 184 diagnostic computations on 64
dual-CPU nodes belonging to a cluster. Each node contains
two 2.4 GHz AMD Opteron DP 250 processors and 4 Gb of
RAM.

In all experiments, SAFARI was configured with M = 8
and N = 4, that is, maximum number of 8 retries before giv-
ing up the climb, and a total of 4 attempts. To provide more
precise average run-time performance data for this random-
ized algorithm, we average the SAFARI run-times over 10
runs on each model and observation vector.

Implementation Notes and Test Set Description

We have implemented SAFARI in approximately 1 000 lines
of C code (excluding the LTMS, interface, and DPLL code)
and it is a part of the LYDIA package.’

For implementing RANDOMDIAGNOSIS (cf. Alg. 1)
we have modified the POSIT satisfiability solver (Freeman
1995). The modification ensured a random initial assign-
ment for the greedy stochastic search. For the consistency
check performed in line 8, we have used LTMS which, while
incomplete in general, is complete in our experimentation
setup (it can be shown that given a full health assignment,
values of all inputs and outputs, well-formedness of the cir-
cuit, etc., LTMS is complete).

Traditionally, MBD algorithms have been tested on diag-

nostic models of digital circuits like the ones included in the
ISCAS85 benchmark suite (Brglez and Fujiwara 1985). As
models derived from ISCASS85 are large from the diagnos-
tic perspective, we have also considered four medium-sized
circuits from the 74X XX family (Hansen, Yalcin, and Hayes
1999).
Since the performance of diagnostic algorithms depends on
the observation vectors, we have averaged our experimen-
tal results over a number of different observations for each
model. These observations lead to diagnoses of different
minimal-cardinality values, varying from 1 to nearly the
maximum for the respective circuits (for the 74XXX models
it is the maximum). The experiments omit nominal scenar-
ios as they are trivial from the viewpoint of MBD.

Table 1 provides an overview of the fault diagnosis bench-
mark used for our experiments. The third and fourth
columns show the number of observable and assumable vari-
ables, which characterize the size of the circuits. The last
column shows the number of observation vectors with which
we have tested the models.

Comparison to ALLSAT and Model Counting

We have compared the performance of SAFARI to that of a
pure SAT-based approach, which uses blocking clauses for
avoiding duplicate diagnoses (Jin, Han, and Somenzi 2005).

3LYDIA, SAFARI, and the diagnostic benchmark can be down-
loaded from http://fdir.org/lydia/.



Name | Description |OBS| | [COMPS| | Tests
74182 | 4-bit CLA 14 19 250
74L85 | 4-bit comparator 14 33 150
74283 | 4-bit adder 14 36 202
74181 | 4-bit ALU 22 65 350
c432 27-channel 43 160 301
interrupt controller
c499 32-bit SEC circuit 73 202 835
c880 8-bit ALU 86 383 | 1182
c1355 | 32-bit SEC circuit 73 546 836
c1908 | 16-bit SEC/DEC 58 880 846
c2670 | 12-bit ALU 373 1193 | 1162
c3540 | 8-bit ALU 72 1669 756
¢5315 | 9-bit ALU 301 2307 | 2038
c6288 | 32-bit multiplier 64 2416 404
¢7552 | 32-bit adder 315 3512 | 1557

Table 1: An overview of the 74XXX/ISCAS85 benchmark
circuits

Although SAT encodings have worked efficiently on a vari-
ety of other domains, such as planning, the health modeling
makes the diagnostic problem so underconstrained that an
uninformed ALLSAT strategy (i.e., a search not exploiting
the continuity imposed by the weak-fault modeling) is quite
inefficient, even for small models.

To substantiate our claim, we have experimented with the
state-of-the-art satisfiability solver RELSAT, version 2.02
(Bayardo and Pehoushek 2000). Instead of enumerating
all solutions and filtering the minimal diagnoses only, we
have performed model-counting, whose relation to MBD
has been extensively studied (Kumar 2002). While it was
possible to solve the two smallest circuits, the solver did not
terminate for any of the larger models within the predeter-
mined time of 1 h. The results are shown in Table 2.

Name | models time [s]
74182 | 3.9896 x 107 1
74185 | 8.3861 x 104 340
74283 | > 1.0326 x 10'° | > 3600
74181 | > 5.6283 x 10%® | > 3600

Table 2: Model count and time for counting

The second column of Table 2 shows the model count
returned by RELSAT, with sample observations from our
benchmark. The rightmost column reports the time for
model counting. This slow performance on relatively small
diagnostic instances leads us to the conclusion that special-
ized solvers like SAFARI are better suited for finding min-
imal diagnoses than off-the-shelf ALLSAT (model count-
ing) implementations that do not encode inference proper-
ties similar to those encoded in SAFARI.

Comparison to Complete Methods and Absolute
Performance of the Algorithm

Table 3 shows the results from comparing SAFARI to im-
plementations of two state-of-the-art complete and deter-

ministic diagnostic algorithms: an implementation of CDA*
(Williams and Ragno 2007) that has been modified to be
complete, and HA* (Feldman and van Gemund 2006).

CDA* | HA™ SAFARI

Name % of % of % of tmin tmax

tests tests tests [ms] [ms]
74182 100 100 100 0.41 1.25
74185 | 100 100 100 0.78 7.47
74283 100 100 100 0.92 4.84
74181 79.1 | 100 100 2.04 6.94
c432 74.1 71.1 | 100 8.65 38.94
c499 29 24.1 | 100 14.19 31.78
c880 11.6 12.4 | 100 48.08 88.87
c1355 3.8 10.8 | 100 95.03 141.59
c1908 0 6.1 | 100 237.77 349.96
c2670 0 5 100 500.54 801.12
c3540 0 1.1 | 100 984.31 | 1300.98
c5315 0 1.1 | 100 1950.12 | 2635.71
c6288 0 3.5 | 100 2105.28 | 2688.34
c7552 0 3.9 | 100 45574 6545.21

Table 3: Comparison of CDA*, HA*, and SAFARI [% of
tests solved] and absolute performance of SAFARI [ms]

Table 3 shows, for each model/algorithm combination, the
percentage of all tests for which a diagnosis could be com-
puted within 1 minute. As it is visible from the third column,
SAFARI could find diagnoses for all observation vectors,
while the performance of the two deterministic algorithms
degraded as model size increased. Furthermore, we have
observed a degradation of the performance of CDA* and
HA* with increased cardinality of the minimal-cardinality
diagnoses, while, as we will see below, the performance of
SAFARI remained unaffected.

The two rightmost columns of Table 3 show the absolute
performance of SAFARI. This varies from under a millisec-
ond for the small models, to approx. 7 s. These fast abso-
lute times show that SAFARI is suitable for on-line reasoning
tasks, where autonomy depends on speedy diagnosis com-
putation. For each model, the minimum and maximum time
for computing a diagnosis has been computed. These values
are shown under columns ¢,,;, and ¢,,q,, respectively. The
small range of ¢,,,4; — tymin confirms our theoretical predic-
tions that SAFARI is insensitive to the fault cardinalities of
the diagnoses it computes. The performance of CDA* and
HA*, on the other hand, is dependent on the fault cardinality
and quickly degrades with increasing cardinality.

Optimality of the Greedy Stochastic Search

From the result produced by the complete diagnostic meth-
ods (CDA* and HA*), we know the exact cardinalities of the
minimal-cardinality diagnoses for some of the observations.
By considering the observations that lead to single and dou-
ble faults, we have evaluated the average optimality of SA-
FARI. Table 4 shows these optimality results for the greedy
search. The second column shows the number of observa-
tions leading to single faults for each weak-fault model. The



third column shows the average cardinality of SAFARI. The
second and third columns are repeated for double faults.

Single Faults Double Faults
Name | #oftests | Cardinality | # of tests | Cardinality
74182 50 1 50 2
74L85 50 1.04 50 2.12
74283 50 1.08 50 2.2
74181 50 1.19 50 2.25
c432 58 1.19 82 2.46
c499 84 1.49 115 3.27
c880 50 1 50 2.01
c1355 84 1.66 6 2.15
c1908 52 1.05 — -
c2670 29 1.03 13 2.12
¢3540 8 1.01 - -
c5315 14 1 7 2
c6288 13 1 1 2
c7552 27 1.01 16 2

Table 4: Optimality of SAFARI [average cardinality]

Table 4 shows that, for weak fault models, the average cardi-
nality returned by SAFARI is very close to the optimal values
for both single and double faults. The c1355 model shows
the worst-case results for the single-fault observations, while
c499 is the most difficult weak-fault model for computing a
double-fault diagnosis. These results can be easily improved
by increasing M and N, as discussed in the previous section.
It is beyond the scope of this article to define the relationship
between diagnosis minimality and the parameters M and V;
we leave it as future work to study this relationship.

Conclusion

We have described a greedy stochastic algorithm for com-
puting diagnoses within a model-based diagnosis frame-
work. We have shown that subset-minimal diagnoses can
be computed optimally in weak fault models, and analyzed
the optimality of the computed diagnoses for other configu-
rations of SAFARI.

We have applied SAFARI to a suite of benchmark mod-
els, and shown significant performance improvements for
multiple-fault diagnoses, compared to two state-of-the-art
deterministic algorithms, CDA* and HA*. Our results indi-
cate at least an order-of-magnitude speedup over these algo-
rithms for multiple-fault diagnoses. Moreover, whereas the
search complexity for the deterministic algorithms tested in-
creases with fault cardinality, the search complexity for SA-
FARI is virtually independent of fault cardinality.

We argue that SAFARI can be of broad practical signifi-
cance, as it can compute a significant fraction of cardinality-
minimal diagnoses for systems too large or complex to be
diagnosed by existing deterministic algorithms.
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