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Abstract

Given a system design (SD), a key task is to optimize this
design to reduce the probability of catastrophic failures. We
consider the task of redesigning an SD to minimize the proba-
bility of particular faults by introducing components selected
from a component library. We have implemented a General
Redesign Engine (GRE), which uses model-based reasoning
techniques and Boolean functional synthesis from component
libraries, to automate redesign for combinational circuits. For
a significant subset of observations leading to catastrophic
(forbidden) modes we demonstrate that GRE trades off re-
design cost for increased fault tolerance, and shows a signifi-
cant advantage compared to the Triple-Modular Redundancy
(TMR) method. Our algorithm has a wide application in AI,
including automated software and hardware design, error de-
tection, reconfiguration and recovery, and modular robotics.

Introduction

Technological systems are designed to trade off a variety of
characteristics; for example, a computer is designed to trade
off cost, processing speed, size, reliability, etc. Engineering
design has adopted the principles of modularity, regularity
and hierarchy as keys to cost-effective and reliable design,
both in theory and practice (Suh 1990). A key part of this
design process is the use of component libraries, which en-
able reuse of well-designed components/sub-systems. As
the complexity of technological systems increases, mod-
ule re-use increases, based on (a) symmetrical and regu-
lar structures and (b) developing standards for components
and dimensions, since this regularity and component-based
methodology translates into reduced design, fabrication and
operation costs.

Given an SD, one key step is to verify that the SD meets
its primary objectives. For example, for a control system one
must verify that the system cannot enter a forbidden state
through control actions. Verification can provide guarantees
about controllability, observability, etc. However, verifica-
tion of this type is a computationally intensive process, and
may not cover the possibility that forbidden states may occur
due to faults.

Achieving tolerance to faults is addressed during the de-
sign process. Fault/defect-tolerant design for hardware is
based on adding redundancy to tolerate known faults or man-
ufacturing defects, using reconfigurable blocks/components.

Standard fault-tolerance techniques, which include meth-
ods such as dual-modular redundancy, triple-modular re-
dundancy (TMR), triple interwoven redundant logic, and
quadruple logic (Han et al. 2005), introduce pre-defined re-
dundant circuit topologies. For example, a triple-modular
redundancy (TMR) topology triplicates each gate and then
collates the output signals using a voter (arbitration com-
ponent), which computes the correct value based on output
majority. A TMR circuit can be further triplicated to ob-
tain nine copies of the original module and two layers of
majority-voter gates; this design process can be repeated to
achieve increasing levels of fault tolerance, resulting in de-
signs called cascaded triple modular redundancy (CTMR) or
recursive triple modular redundancy (RTMR).

Such traditional fault/defect-tolerant design approaches
have several drawbacks. Among them are the increase in
the number of components, system cost, system complexity,
and potentially latency. Another drawback is that it opti-
mizes overall system reliability rather than reliability to the
most significant faults. In some cases redundancy for critical
components is manually introduced. However, this approach
usually covers just a subset of the single points of failure and
not multiple-fault catastrophic states.

Rather than adopt standard redundancy-based methods
for increasing fault tolerance, which employ fixed topology-
replacement (e.g., replacing a single component with a TMR
sub-system), we propose a model-based redesign method
that uses an optimization algorithm to generate a cost-
optimal design that is tolerant to a set A of catastrophic
faults. Given an observation corresponding to a catastrophic
fault αi, this approach selects potential components to add
to the circuit from a component library and searches over all
possible circuit topologies to find a cost-minimal redesign
that reduces the likelihood of αi.

The approach we propose is conceptually shown in Fig. 1.
Given a system, we automatically construct a danger detec-
tion system that, when presented with an observation cor-
responding to a catastrophic failure, switches an output se-
lector from the original system to an (also automatically de-
signed) correction subsystem. To automatically design the
danger detection and correction subsystems, we compose a
cost-minimal Boolean function from a component library.

Our contributions are as follows: (1) we formally define
the problem of model-based redundancy redesign; (2) we
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Figure 1: Danger detection and correction

propose an algorithm, called GRE, for automated redesign
based on synthesis from component libraries; and (3) we
empirically show that GRE creates cheaper redesigns for
a standard benchmark circuit, as compared to the standard
TMR fault-tolerance approach.

Related Work

A wide range of different design approaches have appeared
in the literature. Our approach is closest to the area of Relia-
bility-Based Design Optimization (RBDO), a technique that
attempts to optimize a design with respect to the reliability
of the system (Du, Guo, and Beeram 2008). The standard
RBDO algorithm consists of a double-loop, in which the
outer loop performs design optimization, with calls to the in-
ner loop, which is a reliability oracle that computes the sys-
tem reliability function for each proposed design. There are
several variants of the double-loop RBDO approach, such as
a single-loop method (Liang, Mourelatos, and Tu 2008).

Our approach can be viewed as consisting of a double-
loop algorithm, in which the outer loop performs design op-
timization over an observation O corresponding to a catas-
trophic fault, with calls to the inner loop, which is a diag-
nosis oracle that computes the diagnosis function, given O,
for each proposed design. Our approach is different in that
it computes diagnoses rather than a reliability function, and
optimizes tolerance to a specific set of faults rather than op-
timizing overall system reliability (and hence tolerance to a
distribution of faults).

The closest RBDO approach to our is described in
(Monga and Zuo 1998), where the notion of life-cycle war-
ranty is addressed; here, the cost function, which is mini-
mized via a Genetic Algorithm (GA), includes costs of man-
ufacture, installation/setup, and repair (both during and be-
yond the warranty period). This approach is extended in
(Liu et al. 2007), who describe the objective function for
diagnostics-optimal design of a product under warranty from
a manufacturer’s point of view, focusing on the robustness of
the diagnostics-oriented design to the key model parameters
and decision variables. In comparison to these approaches,
we use a component library to add new components, rather
than assuming a fixed system model and using GA to opti-
mize the model structure.

The literature contains a wide variety of methods for com-
ponent design, but few methods for redesigning a system
with a given structure. Allison et al. (2007) analyze methods

for design based on optimal system partitioning (to reduce
computational complexity of the design process). There are
methods for finding the backbone or funnel variables which
are critical for every possible design (Menzies and Singh
2003). Other design or redesign approaches employ hier-
archical (López-Arévalo et al. 2007) or qualitative abstrac-
tions (Ollinger and Stahovich 2004) of the system being de-
signed. In our approach we could adopt any of these meth-
ods, but our methodology is fundamentally different from all
of these techniques in that we aim to modify an existing de-
sign to improve its tolerance to catastrophic faults, and not
create a design from scratch without any aim for improving
fault tolerance.

Several authors have proposed design methodologies
based on system partitioning, e.g., (Allison, Kokkolaras,
and Papalambros 2007; Chen, Macwan, and Li 2007). For
example, (Chen, Macwan, and Li 2007) proposes a re-
design methodology based on pattern-based decomposition
to rapidly locate and isolate the portions of the design model
that must be recomputed to satisfy redesign requirements.
This approach transforms the system equations into an inci-
dence matrix mapping equations by variable, in which vari-
ables participating in equation i as assigned a 1 in row i, and
a 0 otherwise. The matrix is then transformed into a block-
angular matrix in which the blocks represent the subprob-
lems formed by decomposition, and the interaction part rep-
resents the coordination imposed on the subproblems. Be-
cause our approach assumes components from a component
library, as well as the possibility of hierarchically organizing
the components, such a problem decomposition is already
incorporated in our methodology.

Design of circuits is quite different than circuit optimiza-
tion (McCluskey 1956). Circuit optimization aims to opti-
mize the design of a circuit with respect to the function f
that the circuit computes. Our design problem is much more
sophisticated, in that we aim to take an existing (possibly
optimized) circuit and redesign it to optimize fault tolerance
given a cost function. As a consequence, the algorithms used
in the two problems are very different.

This work also bears some relationship to redesign to
compensate for defects which occur during the manufac-
turing process (Tahoori 2005), or for nano-structures (Sim-
sir et al. 2008).1 In defect-based redesign, defective com-
ponents, e.g., on a manufactured chip, are isolated using
test and diagnosis methods, and the resulting data stored
on a defect map, which identifies the usability of the (pro-
grammable) elements of the manufactured chip. Defect tol-
erance is achieved by reconfiguring key processes to avoid
defective resources, resulting in modifications to the logic
and architecture design. In our approach, we assume that
the system is defect-free, and we aim to increase the toler-
ance of the design to possible catastrophic faults.

Our redesign approach also bears some resemblance to
diagnosis-based reconfiguration (Chen and Provan 2001;
Stumptner and Wotawa 1998). In contrast to this work,
which aims to restore system functionality given a diagnosed

1A thorough survey of this approach, as applied to FPGAs, is
contained in (Cheatham, Emmert, and Baumgart 2006).



fault, our approach aims to increase the system’s tolerance
to anticipated catastrophic faults, and not to faults that have
already occurred.

Preliminaries

We first give a brief overview of the process of creating mod-
els from a component library within a Model-Based Reason-
ing framework. We assume that we can create a system-level
model by composing components from a component library
(Gössler and Sifakis 2005; Keppens and Shen 2001).

We call a well-defined model fragment a component. We
assume that each component can operate in a set of behavior-
modes, which we formalize using an assumable M . Further,
there are two classes of components: primitive and compos-
ite. A primitive component is the simplest model fragment
to be defined.

Definition 1 (Primitive Component). A primitive compo-
nent C, 〈SD, M , c, p, IN, OUT〉 is specified using a set of
propositional Wff SD over a set of variables V , assumable
M ∈ V , a cost function c : M 7→ (0;∞), a mode proba-
bility function p : M 7→ [0; 1], and input/output variables,
IN, OUT ∈ V .

A Running Example

We illustrate the notions in this paper with a model of a
Boolean circuit. Fig 2 shows three primitive components
from a circuit component library; for example, component
g1 an inverter, has mode-variable h1, input i, output o, and
system description hi ⇒ (o ⇔ ¬i). The cost function c
denotes the cost of the component (e.g., manufacturing cost,
power consumption, chip area, etc.), and the mode probabil-
ity function p denotes the probability distribution function
over the component modes.

A composite component consists of a collection of prim-
itive components which are merged according to a set χ of
composition rules (Gössler and Sifakis 2005). In this paper
we assume the standard composition rules of discrete cir-
cuits; specifying the semantics of composition is beyond the
scope of this paper, and we refer the reader to (Gössler and
Sifakis 2005; Keppens and Shen 2001) for details.

A set of (primitive/composite) components defines a com-
ponent library.

Definition 2 (Component Library). A component library L
is defined as a set of (primitive/composite) components.

The example component library L, shown in Fig 2, contains
fault models for three gates (an inverter, a 3-input AND-
gate, and a NOR-gate). The assumable variable is h, and
the cost and fault probability functions are the same for all
components, c = 1, and p(h = True) = 0.95.

ha ⇒ (o⇔ i1 ∧ i2 ∧ i3)hi ⇒ (o⇔ ¬i)

i o

hn ⇒ (¬o⇔ i1 ∨ i2)

g1 g2 g3

h1

o

i3
i2
i1

h2 i2

i1
o

h3

Figure 2: An example component library

Models and Systems

Given a library of components, we can build system models,
which we specify as follows.

Definition 3 (Model-Based System). Given a component li-
brary L, a diagnostic system SYS, 〈SD, COMPS, OBS, c,
p〉, contains SD, COMPS, c, and p, constructed from L ac-
cording to the rules χ, and a set of observable variables OBS
corresponding to IN ∪OUT, the inputs and outputs for SD.

In order to construct a model we have to (1) choose a mul-
tiset of components from the universe (component library)
L, (2) to create a system topology by interconnecting the se-
lected components, (3) to disambiguate the variable names
in the model and (4) to compose the failure probability and
cost functions p and c. The 2-to-4 line demultiplexer shown
in Fig. 3 can be built from the Fig. 2 components.
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Figure 3: A demultiplexer circuit

After mapping the variables inLwe get the following propo-
sitional system description:

SD =







































h1 ⇒ (a⇔ ¬p)
h2 ⇒ (p⇔ ¬r)
h3 ⇒ (b⇔ ¬q)
h4 ⇒ (q ⇔ ¬s)
h5 ⇒ (o1 ⇔ i ∧ p ∧ q)
h6 ⇒ (o2 ⇔ i ∧ r ∧ q)
h7 ⇒ (o3 ⇔ i ∧ p ∧ s)
h8 ⇒ (o4 ⇔ i ∧ r ∧ s)

The assumables are COMPS = {h1, h2, . . . , h8}, the ob-
servables are OBS = {a, b, i, o1, o2, o3, o4}.

Diagnostic Modeling

Model-based systems can be used for a variety of purposes,
such as simulation and diagnosis. If we specify a model with
modes denoting failure-states, then we call this a diagnosis
model. Further, given an observation, we can compute a
diagnosis for such a model in terms of an assignment to the
system’s mode-variables.



Definition 4 (Diagnosis). Given an SYS, an observation α
over some variables in OBS, and an assignment ω to all vari-
ables in COMPS, ω is a diagnosis iff SD ∧ α ∧ ω 6|=⊥.

Continuing our running example, consider an observation
vector α1 = i ∧ ¬a ∧ ¬b ∧ o4. Throughout this paper we
specify a diagnosis ω as the set of its negative literals. There
are a total of 256 possible assignments to all variables in
COMPS. Example diagnoses are ω1 = {¬h8} and ω2 =
{¬h1,¬h4}.

Definition 5 (Probability of a Diagnosis). The probability
of a diagnosis ω, Pr(ω), is defined as:

Pr(ω) =
∏

x 6∈ω

g(x)
∏

x∈ω

1− g(x)

Note that Pr(ω) gives a prior (non-normalized) probabil-
ity of ω, i.e., the health pdf is conditioned on the model
topology, but not on the observation. Computing a pos-
teriori probabilities require computating all diagnoses and
applying Bayes rule (de Kleer and Williams 1987), but our
task needs a priori probabilities only. According to Def. 5,
Pr(ω1) ≈ 0.035 and Pr(ω2) ≈ 0.0018.

Definition 6 (Probability-Minimal Diagnosis). A diagnosis
ω∗ is defined as probability-minimal if no diagnosis ω̃∗ ex-
ists such that Pr(ω̃∗) < Pr(ω∗).

Given an SYS and an observation α, the probabil-
ity of the probability-minimal diagnoses is denoted as
PrMin(SYS, α). Continuing our example, ω1 is probabil-
ity-minimal, while ω2 is not, as Pr(ω2) < Pr(ω1) and
PrMin(SYS, α1) ≈ 0.035.

Other authors use different minimality criteria such
as subset-minimality diagnoses, minimal-cardinality diag-
noses, kernel diagnoses (in a slightly different diagnostic
framework), etc. (de Kleer, Mackworth, and Reiter 1992).

Model-Based Redesign

This section describes the general redesign problem, and our
redesign algorithm, which makes use of the model-based re-
lationship between system mode assignment and observable
assignment. In a model-based system, there is a functional
relationship φ : h → OBS, such that any h∗ ∈ h induces a
unique OBS∗ ∈ OBS.2

Consider SYS and SYS′ implemented with components
from the same library L and having the same set of observ-
able variables OBS. Consider also the assignment ν to all
variables in COMPS such that SD is functioning correctly
(in our example ν would be h1 ∧ h2 ∧ · · · ∧ h8). In general,
a system may have a setHnom of nominal states. We denote
the Boolean function implemented by our system descrip-
tion and conditioned on ν ∈ Hnom as SDν .

Definition 7 (Nominal Equivalence). Given SYS and SYS′

we will say that nominally functioning SYS is equivalent
to nominally functioning SYS′ (denoted as SYS≡nomSYS′)
iff SDν ≡ SD′

ν
.

2In general, some OBS
∗

∈ OBS corresponds to multiple pos-
sible h∗

∈ h.

Problem Statement

We now formally define our redesign problem. Our objec-
tive is to redesign SYS such that we make the system more
robust to a set of (catastrophic) faults. Given the relationship
between mode assignments and observable assignments, we
can define our redesign objective as making a system more
robust to a set of (catastrophic) observations which corre-
spond to faults. We call this set of dangerous observations
A.

Problem 1 (Cost-Optimal Redundancy Redesign). Given
a component library L, SYS = 〈SD, COMPS,
OBS, c, p〉, and a set of (catastrophic) observations
A = {α1, α2, . . . , αn}, compute a redesign R =
〈SD+, COMPS+〉, such that for SYS′ = 〈SD ∪ SD′,
COMPS ∪ COMPS′, OBS, c, p〉 it holds that:

1. SYS≡nomSYS′,

2. ∀α : α ∈ A, PrMin(SYS′, α) < PrMin(SYS, α),

3.
∑

x∈COMPS+ c(x) is minimized.

Model-Based TMR

Consider SD and a set of assumable variables H =
{h1, h2, h3, h4, h8} (e.g., these are components identified as
critical). A TMR redesign adds two layers of redundancy
and a voting mechanism which chooses a consensus of its
inputs. Applying TMR to H in SYS gives us the TMR di-
agnostic system SYS′′, the system description of which is
shown in Fig. 4 and Fig. 5 (the outputs o′4, o′′4 , and o′′′4 of
the circuit shown in Fig. 4 are connected to the identically
named inputs of the circuit shown in Fig. 5).

Let us denote the set of assumable variables in the vot-
ing mechanism as COMPSv (for the TMR design in Fig. 4
and Fig. 5 COMPSv = {h9, h10, h11, h12}). Consider the
following fault probability function g for the TMR circuit in
Fig. 4 and Fig. 5:

g(x) =

{

ǫ1, for x ∈ COMPSv

ǫ2, for x ∈ COMPS \ COMPSv

Let A′ = {αi} be the set of all observations of SYS such
that all diagnoses of SD and αi contain variables in H
only. Next, suppose that ǫ1 < ǫ2. It can be seen that for
any αi ∈ A′, PrMin(SYS′′, αi) < PrMin(SYS, αi) and
SYS≡nomSYS′′. In the experimentation section that fol-
lows, we will see that if we consider a subset of A′, it is
often possible to reduce the number of components and the
cost of the redesigned circuit.

Danger Detection and Correction

Consider the running example from Fig. 3 and a set A
containing two (dangerous) observations A = {α1, α2},
α1 = i ∧ ¬a ∧ ¬b ∧ o4, α2 = i ∧ a ∧ b ∧ ¬o4. Figure 6
shows a circuit D, which produces a true output d iff any
of the observations in A is detected. Figure 7 shows a two-
input multiplexer S, which, depending on the control signal
d, routes the original signal o4, or the corrected o∗4, to the
output õ4.

To complete the running example we construct a correc-
tion circuit C which, given an input of interest i ∧ a ∧ b or
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Figure 5: Majority voting circuit

i ∧ ¬a ∧ ¬b, produces a correct output (o4 and ¬o4, respec-
tively). The resulting circuit is shown in Fig. 8. Clearly the
cost of this circuit (17 gates) is smaller than the one of the
TMR circuit (20 gates).

In this paper we assume that the probability of a failure in
the danger detection and output selection subcircuits is less
than or equal to the probability of any failure in the original
system description.

Automated Fault-Tolerant Redesign

This section presents an algorithm that solves Problem 1
(finding a cost-optimal circuit which is logically equiva-
lent to the original when healthy, but which decrease the a
priori probability of some predefined set of observations).
Our algorithm consists of (1) (nearly) cost-minimal syn-
thesis of models from component libraries and (2) map-
ping (catastrophic) observations into component sets (sub-
circuits) which are used for the synthesis of detection and
correction subcircuits.

d

o4

a

b

i

D

Figure 6: Example of a danger detection circuit

S

õ4

d

o4

o∗4

Figure 7: Example of an output selection circuit

Synthesis from Component Libraries

Algorithm 1 composes a cost-minimal function from a com-
ponent library L, the resulting function evaluating to true for
a set of measurement-points A. Furthermore, Alg. 1 is pro-
vided with a target function SD∗ which is true in A but not
necessarily cost-minimal.

Lustig et al. (2009) prove that, when formulated in terms
of Linear Temporal Logic, the problem of system synthe-
sis from component libraries is undecidable. Algorithm 1 is
guaranteed to terminate because it considers problems with
(non-zero) cost smaller than r, where r is the cost of a target
circuit SD∗ that implements the function Alg. 1 attempts to
synthesize.

Algorithm 1 searches the space of all possible Boolean
circuits of cost smaller than r and checks the equiva-
lence of each candidate to SD∗ by making a call to the
CHECKEQUIVALENCE function in line 6. Although the gen-
eral problem of equivalence checking of two Boolean func-
tions is known to be NP-hard, our implementation solves
a simpler problem by comparing the candidate function in
A only. In particular, we make |A| queries to a Logic-
Based Truth Maintenance System (Forbus and de Kleer
1993) which is of polynomial time complexity at the ex-
pense of incompleteness.
Algorithm 1 uses a double-loop to iterate over all Boolean
circuit compositions. First, in the outer loop (line 3), Alg 1
considers all possible component multisets. The inner loop
(line 4) generates all possible interconnections between the
chosen components (and between the systems’ inputs and
outputs).

It is possible to construct M =
((

n

k+1

))

multisets of cardi-
nality up to n from a library containing k components. Al-
though M grows exponentially, for small n, we can consider
circuits of non-trivial size. For example,

((

32

7

))

= 2 760 681,
which is a modest number of iterations.

Our implementation of NEXTCOMPONENTS is more
complex, as it considers components of variable cost.
Although there are less memory-intensive approaches,



d õ4

C

SD

o4
h8

o1

o2

o3

h2

h3 h4

h1

p

s

r

q

h5

h6

h7

o∗4
h′

8

a

b

i

Figure 8: A fault-tolerant demultiplexer circuit

NEXTCOMPONENTS constructs all multisets of components
with the sum of their costs smaller than r, sorts the result in
order of increasing cost, and returns the cheapest multiset
of components. On subsequent calls NEXTCOMPONENTS

simply iterates over the remaining elements in the list.
A system interconnection can be represented as a bigraph

of |X | and |Y | nodes (cf. Fig. 9 for an illustration). In this
case X contains a node for each of the target system’s inputs
and all candidate components’ outputs while Y contains a
node for each of the system’s outputs and all components’

inputs. We have a total of 2|X|+|Y | different bigraphs, hence

Alg. 1 considers a total search space O((m+1)n ·2|X|+|Y |),
which renders the brute-forcing of this search space infeasi-
ble even for the smallest systems.

p q i x3 x4 x8

X

x2 x7 x5 x6 o4x1

Yx4

x3

x6

x5

x7

x1

x2

p

q

i

x8 o4

Figure 9: A circuit and its interconnection bigraph

It is possible to prune a significant portion of the search
space by skipping over ill-formed circuits. Such circuits
are ones connecting multiple-outputs, having unconnected
inputs or outputs or disconnected components, having feed-
back, etc. Furthermore there are many symmetrical inter-
connections, e.g., the ordering of the inputs of an and-gate is
irrelevant (this may not be the case if we consider arbitrary
logic functions, for example an adder or a multiplier).

One way to sample from the space of all possible inter-

Algorithm 1 Boolean functional synthesis

1: function SYNTHESIZE(L, SD∗, COMPS, A)

inputs: L, component library
SD∗, target system description
COMPS, target component variables
A, set of terms

returns: system description
locals variables: SD∗, system description

r, real, cost bound
m, variable multiset, components
g, bigraph, connections

2: r ←
∑

x∈COMPS
c(x)

3: while m← NEXTMULTISET(COMPS, c, r) do
4: while g ← RANDCONNECTIONS(SD∗, m) do
5: SD′ ← MAKECIRCUIT(m, g)
6: if CHECKEQUIVALENCE(SD′, A) then
7: return SD′

8: end if
9: end while

10: end while
11: return SD∗

12: end function

connections is to consider a subset of all possible biadja-
cent matrices of a certain size, with constraints for produc-
ing well-formed circuit and bypassing symmetries. This is
done by the RANDCONNECTIONS subroutine, making use
of a specialized Constraint Satisfaction (CS) solver. Note
that the use of random sampling for generating possible in-
terconnections turns Alg 1 into an incomplete algorithm, i.e.,
it may fail to find an equivalent circuit. Improving the com-
pleteness and performance of Alg 1 is a separate topic which
we will not discuss in details in this paper.

The General Redesign Engine

Alg. 2 shows the pseudo-code for the General Design Engine
(GRE). Given an initial set of components, COMPS, GRE
first computes a component subset COMPS∗ ⊆ COMPS
such that no malfunctioning of a component in COMPS \
COMPS∗ leads to a danger α ∈ A. This is done in lines
2 – 8 of Alg. 2. The most complex computation there is
performed by the diagnostic engine (MINDIAGNOSIS).

Returning to our running example, we have two sets of
probability-minimal diagnoses: Ω1 = {{¬h8}} for α1, and
Ω2 = {{¬h1}, {¬h2}, {¬h3}, {¬h4}, {¬h8}} for α2. Tak-
ing the union of all components in Ω1 and Ω2 we have
COMPS∗ = {h1, h2, h3, h4, h8}.

Once GRE has computed COMPS∗, it calls the auxil-
iary subroutine SUBCIRCUIT which removes from the orig-
inal system description Wff modeling components not in
COMPS∗ and their interconnections. Doing this for our
running examples results in the following SD∗:

SD∗ =



















h1 ⇒ (a⇔ ¬p)
h2 ⇒ (p⇔ ¬r)
h3 ⇒ (b⇔ ¬q)
h4 ⇒ (q ⇔ ¬s)
h8 ⇒ (o4 ⇔ i ∧ r ∧ s)



Algorithm 2 General redesign engine

1: function GRE(L, SYS, S, A)

inputs: L, component library
SYS, diagnostic system
S, set of Wff , output selection
A, set of terms, dangers

returns: set of Wff , redesigned model
local variables:

C, set of Wff , correction circuit
D, set of Wff , danger detection circuit
COMPS∗, set of assumable variables
SD∗, set of Wff , redesign target
B, set of terms, propagated dangers

B̄, set of terms, corrected dangers
Ω, set of diagnoses
α, term, danger
ω, variable set, diagnosis

2: COMPS∗ ← ∅
3: for all α ∈ A do
4: Ω← MINDIAGNOSES(SYS, α)
5: for all ω ∈ Ω do
6: COMPS∗ ← COMPS∗ ∪ ω
7: end for
8: end for
9: SD∗ ← SUBCIRCUIT(SD, COMPS∗)

10: B ← PROPAGATEVALUES(SD, SD∗, A)
11: B̄ ← CORRECTOUTPUTS(SD∗, COMPS∗, B)
12: C ← SYNTHESIZE(L, SD∗, COMPS∗, B)
13: D ← SYNTHESIZE(L, SD∗, COMPS∗, B̄)
14: return D ∪ S ∪C
15: end function

It may be the case that the inputs and outputs to SD∗ are
not necessarily inputs and outputs to SD. For example, if
we consider the single dangerous observation A′ = {{i ∧
a ∧ b ∧ ¬o1 ∧ ¬o2 ∧ ¬o3 ∧ ¬o4}}, the detection/correction
target subcircuit is formed by components with assumable
variables h2, h4, and h8. In the latter case we need the dan-
gerous inputs/outputs propagated to the inputs/outputs of the
detection/correction target subcircuit SD∗. This is done by
the PROPAGATEVALUES function, which uses, for example,
Boolean constraint propagation (Forbus and de Kleer 1993).
Evaluating PROPAGATEVALUES with A′ as input gives us
{{¬p,¬q,¬o4}} and evaluating PROPAGATEVALUES with
the danger set A (cf. the running example) as input results
in the unmodified A (in the latter case SD∗ and SD share the
same inputs and outputs).

In order to generate the correction circuit, GRE needs to
(1) take the inputs assignment from each danger observa-
tion and (2) to compute the outputs for these inputs given a
nominal functioning of the model. This is performed by the
CORRECTOUTPUTS function in line 11 of Alg. 2.

Once we have computed the target subcircuit SD∗, the
function SYNTHESIZE generates the correction circuit C
(line 12) and the danger detection circuit D (line 13). Due
to the randomized nature of Alg 1 C and D are nearly cost
optimal with respect to the component library L.

Experimental Results
In this section we experimentally study the trade off between
the redesign cost and the number of suppressed dangers. The
complexity of Alg. 1 constrains the size of the models we
can automatically redesign with GRE. As improving the per-
formance of Alg. 1 is outside the scope of this paper, we have
studied the GRE trade offs on Boolean circuits having less
10 gates (cf. Table 1 for an overview).

Name Description |IN| |OUT| |COMPS|

poly Boolean polycell 5 2 5
add 2-bit adder 3 2 5
sub 2-bit subtractor 3 2 7
demux 2-4 demultiplexer 3 4 8

Table 1: GRE models.

The component library we have used for testing GRE is
standard, consisting of an inverter, and 2-input XOR, AND,
NAND, OR, and NOR gates. We have assumed that all com-
ponents have the same cost (c = 1).

An advantage of GRE is that it allows the suppression of,
for example, all observations leading to single-faults. Such
redesign strategies are very applicable in practice, as de-
creasing the likelihood of double-faults and faults of higher
cardinality necessitates the use of a voting mechanism with
lower failure probability than a multiple-cardinality fault.

Name TMR Cost GRE Cost Savings

poly 23 17 26%

add 23 16 30%
sub 29 20 30%
demux 40 29 28%

Table 2: GRE cost savings for single-faults.

Table 2 shows the cost of TMR and the cost of a GRE re-
design suppressing all observations leading to single-faults.
We gain an almost constant cost decrease between 26% and
28%. Note that the cost saving can be arbitrarily larger with
non-uniform component costs.

The trade off between the redesign cost and the number
of suppressed symptoms for the four benchmark circuits is
shown in Fig. 10. For each benchmark circuit we have com-
puted the set of all observations A leading to faults of cardi-
nality k. For each cardinality k, we have repeatedly sampled
(20 times) A and computed the redesign cost of suppressing
all dangers in A.

Figure 10 shows that for many sets of dangers, GRE com-
putes a correction circuit of a cost smaller than the one of the
original circuit (the latter is shown with black dashed line in
Fig. 10). Interestingly, it is cheaper to suppress smaller sets
of higher-cardinality faults (e.g., double-faults), than, for ex-
ample all single-faults. This can be useful in circumstances,
where faults with smaller a priori probability have higher
impact (this necessitates the introduction of a loss function
which is a subject of future work).
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Figure 10: GRE costs vs. number of suppressed symptoms
(correction subcircuits).

From the experiments of redesigning small circuits, it is
clear that GRE can be used to trade off reliability for cost
and after the performance of the circuit synthesis algorithm
is improved to handle larger models, GRE will be useful for
a range of model-based redesign problems.

Conclusion

This paper presents a novel model-based algorithm, GRE,
for redesigning systems to display fault-tolerance to spec-
ified faults. GRE uses a cost-optimal Boolean functional
synthesis algorithm to generate a cost-minimal detection and
correction mechanism. We have empirically shown that
GRE creates cheaper redesigns compared to the standard
TMR fault-tolerance approach.

GRE can be applied to several tasks beyond fault-tolerant
design, since it is based on model-based redesign. For ex-
ample, it can redesign systems to avoid “forbidden” modes,
as is done in safety-verification.
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