
Empirical Evaluation of Diagnostic Algorithm

Performance Using a Generic Framework

Alexander Feldman1, Tolga Kurtoglu2, Sriram Narasimhan3, Scott Poll4, David Garcia5,
Johan de Kleer6, Lukas Kuhn6, Arjan van Gemund1

1 Delft University of Technology, Delft, 2628 CD, The Netherlands
{a.b.feldman,a.j.c.vangemund}@tudelft.nl

2 Mission Critical Technologies @ NASA Ames Research Center, Moffett Field, CA, 94035, USA
tolga.kurtoglu@nasa.gov

3 University of California, Santa Cruz @ NASA Ames Research Center, Moffett Field, CA, 94035, USA
sriram.narasimhan-1@nasa.gov

4 NASA Ames Research Center, Moffett Field, CA, 94035, USA
scott.poll@nasa.gov

5 Stinger Ghaffarian Technologies @ NASA Ames Research Center, Moffett Field, CA, 94035, USA
david.garcia@nasa.gov

6 Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
{lukas.kuhn,dekleer}@parc.com

ABSTRACT

A variety of rule-based, model-based and
data-driven techniques have been proposed
for detection and isolation of faults in phys-
ical systems. However, there have been few
efforts to comparatively analyze the perfor-
mance of these approaches on the same sys-
tem under identical conditions. One reason
for this was the lack of a standard frame-
work to perform this comparison. In this pa-
per we introduce a framework, called DXF,
that provides a common language to repre-
sent the system description, sensor data and
the fault diagnosis results; a run-time archi-
tecture to execute the diagnosis algorithms
under identical conditions and collect the di-
agnosis results; and an evaluation compo-
nent that can compute performance metrics
from the diagnosis results to compare the al-
gorithms. We have used DXF to perform an
empirical evaluation of 13 diagnostic algo-
rithms on a hardware testbed (ADAPT) at
NASA Ames Research Center and on a set
of synthetic circuits typically used as bench-
marks in the model-based diagnosis commu-
nity. Based on these empirical data we ana-
lyze the performance of each algorithm and
suggest directions for future development.

2/20107/2010

This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the
original author and source are credited.

1 INTRODUCTION

Fault Diagnosis in physical systems involves the
detection of anomalous system behavior and the
identification of its cause. Some key steps in diag-
nostic inference are fault detection (is the output
of the system incorrect?), fault isolation (what is
broken in the system?), fault identification (what
is the magnitude of the failure?), and fault recov-
ery (how can the system continue to operate in the
presence of the faults?). To develop diagnostic in-
ference algorithms requires expert knowledge and
prior know-how about the system, models describ-
ing the behavior of the system, and operational
sensor data. This problem is challenging for a va-
riety of reasons including:

• incorrect and/or insufficient knowledge about
system behavior

• limited observability

• presence of many types of faults (such as sys-
tem, supervisor, actuator, or sensor faults;
additive and multiplicative faults; abrupt and
incipient faults; persistent and intermittent
faults; etc.)

• non-local and delayed effect of faults due to
dynamic nature of the system.

• presence of other phenomena that influ-
ence/mask the symptoms of faults (unknown
inputs acting on system, noise that affects the
output of sensors, etc.)

Several communities have attempted to solve
the diagnostic inference problem using various
methods. Some approaches have been:

• Expert Systems - These approaches encode
knowledge about system behavior into a form
that can be used for inference. Some exam-
ples are rule-based systems (Russell & Norvig,
2003) and fault trees (Kavčič & Juričić, 1997).

1

• Model-Based Methods - These approaches use
an explicit model of the system configura-
tion and behavior to guide the diagnostic in-
ference. Some examples are Fault Detection
and Isolation (FDI) methods (Gertler, 1998),
statistical methods (Basseville & Nikiforov,
1993), and “Artificial Intelligence (AI)”meth-
ods (Reiter, 1987).

• Data-Driven Methods - These approaches use
the data from representative runs to learn pa-
rameters that can then be used for anomaly
detection or diagnostic inference for future
runs. Some examples are Inductive Monitor-
ing System (IMS) (Iverson, 2004), and Neural
Networks (Sorsa & Koivo, 1998).

• Stochastic Methods - These approaches treat
diagnosis as a belief state estimation prob-
lem. Some examples are Bayesian Networks
(Lerner, Parr, Koleer, & Biswas, 2000), and
Particle Filters (de Freitas, 2002).

Despite the development of such a variety of
notations, techniques, and algorithms, efforts to
evaluate and compare diagnostic algorithms (DAs)
have been minimal. One of the major deterrents
is the lack of a common framework for evaluating
and comparing diagnostic algorithms. The estab-
lishment of such a framework would accomplish
the following objectives:

• Accelerate research in theories, principles,
modeling and computational techniques for
diagnosis of physical systems.

• Encourage the development of software plat-
forms that promise more rapid, accessible,
and effective maturation of diagnostic tech-
nologies.

• Provide a forum for algorithm developers to
test and validate their technologies.

• Systematically evaluate diagnostic technolo-
gies by producing comparable performance
assessments.

Such a framework requires the following:

• A standard representation format for the sys-
tem description, sensor data, and diagnosis
result.

• A software run-time architecture that can run
specific scenarios from actual system, simula-
tion, or other data sources such as files (in-
dividually or as a batch), execute DAs, send
scenario data to the DA at appropriate time
steps, and archive the diagnostic results from
the DA.

• A set of metrics to be computed based on the
comparison of the actual scenario and diag-
nosis results from the DA.

In this paper, we present a framework that at-
tempts to address each of the above issues. The
framework architecture employed for evaluating
the performance of DAs is shown in Fig. 1 and
is called DXF. Major elements are systems under
diagnosis, DAs, scenario-based experiments, and

metrics. System catalogs specify topology, com-
ponents, and high-level mode behavior descrip-
tions, including failure modes. DXF provides a
program for quantitatively evaluating the DA out-
put against known fault injections using prede-
fined metrics.

The current version of DXF and this paper ad-
dress a class of abrupt failures such as the ones
often observed in electrical power systems. Other
types of failures, for example intermittent or con-
tinuous ones, are left for future work.

1.1 Contributions

The contributions of this paper are as follows:

• It introduces a benchmarking framework to
be used for systematic empirical evaluation of
diagnostic algorithm performance. Moreover,
it defines and describes the main elements of
the framework so that the benchmarking re-
sults can be applied to any arbitrary physical
or synthetic system by using the architecture
described in the paper.

• It provides a comprehensive set of empirical
evaluation results in order to validate the pro-
posed framework and to facilitate the under-
standing and comparative analysis of different
diagnostic technologies.

1.2 Organization of the Paper

The rest of this paper is organized as follows. Sec-
tion 2 contains related work. Section 3 presents
DXF in detail including the representation lan-
guages used, the run-time architecture developed
for experimentation, and the diagnostic perfor-
mance metrics defined. Section 4 describes how
the benchmarking was performed including a de-
scription of the two systems used, the faults in-
jected, the DAs tested, and the results. Section 5
presents major assumptions made and issues ob-
served. Finally, Section 6 presents the conclusions.

2 RELATED WORK

The development of monitoring and diagnostic
technologies is of great interest to many applica-
tions. As these algorithms become more readily
available, the necessity for assessing the perfor-
mance of alternative diagnostic tools becomes im-
portant. As a result, there is an increasing need for
a framework to evaluate of competing diagnostic
technologies.

To address this need, several researchers have
attempted to demonstrate benchmarking capabil-
ity (Orsagh, Roemer, Savage, & Lebold, 2002;
Roemer, Dzakowic, Orsagh, Byington, & Vachtse-
vanos, 2005; Bartyś, Patton, Syfert, de las Heras,
& Quevedo, 2006). Among these, Bartyś et al.
(2006) presented a benchmarking study for ac-
tuator fault detection and identification (FDI).
This study, developed by the DAMADICS Re-
search Training Network, introduced a set of 18
performance indices used for benchmarking FDI
algorithms on an industrial valve-actuator system.
The indices measure the temporal performance of

2

B
e

n
c
h

m
a

rk
in

g

1

Physical System under Evaluation

Fault

Injection

Fault Catalog

Test

Scenarios

Diagnostic Algorithm

Algorithm A

.....

Benchmarking

Software

Diagnostic

Data

Output

Diagnostic

Algorithm
Scorecard

Metric 1

Metric 2

Metric 3

....

Fault

Data

XML

XML System

Description

M
o

d
e

lin
g

 &
 D

A
 D

e
v
e

lo
p

m
e

n
t

E
x
p

e
ri
m

e
n

ta
ti
o

n

Performance

Metrics

XML System

Description

Algorithm B

Algorithm C

Figure 1: Framework architecture

detection and isolation decisions, as well as true
and false detection and isolation rates, sensitivity,
and diagnostic accuracy. This benchmark study
uses real process data, and demonstrates how the
performance indices can be calculated for 19 actu-
ator faults using a single fault assumption.

Izadi-Zamanabadi and Blanke (1999) presented
a ship propulsion system as a benchmark for au-
tonomous fault control. This benchmark has two
main elements. One is the development of an FDI
algorithm, and the other is the analysis and imple-
mentation of autonomous fault accommodation.

Relevant to aerospace industry, Simon, Bird,
Davison, Volponi, and Iverson (2008) introduced
a benchmarking technique for gas path diagno-
sis methods to assess the performance of engine
health management technologies.

Finally, Orsagh et al. (2002) provided a method
to measure the performance and effectiveness of
prognostics and health management algorithms for
US Navy applications (Roemer et al., 2005). In
this work, the performance metrics are defined
separately for detection, isolation, and prognosis.
In addition, this work also combined individual
metrics into a composite score by implementing a
weighted average sum. Moreover, it defined effec-
tiveness metrics as a separate category that can be
used to incorporate non-technical aspects such as
operation, maintenance and implementation costs,
computer resource requirements, and algorithm
complexity into the analysis. Using these metrics,
one can assess the overall effectiveness and benefit
of diagnostic health management systems.

Other researchers have also proposed similar
cost-benefit formulations for diagnostic systems
(Williams, 2006; Kurien & Moreno, 2008; Hoyle,
Mehr, Tumer, & Chen, 2007). These approaches,

however, are primarily concerned with higher-level
trade-offs in integrating diagnostic solutions to
provide health management functionality and fo-
cus on performance indices such as operational
cost, and maintainability.

The DXF framework presented in this paper
adopts some of its metrics from Kurtoglu, Na-
rasimhan, Poll, Garcia, Kuhn, de Kleer, van
Gemund, and Feldman (2009) and extends prior
work in this area by defining a number of novel
diagnostic performance metrics; by providing a
generic, application independent architecture that
can be used for evaluating different monitoring
and diagnostic algorithms; and by facilitating the
use of real process data on a large-scale, complex
engineering system.

3 FRAMEWORK

We have developed a framework called DXF that
allows systematic comparison and evaluation of di-
agnostic algorithms under identical experimental
conditions. The key components of this framework
include representation languages for the physical
system description, sensor data and diagnosis re-
sults, a runtime architecture for executing diag-
nostic algorithms and diagnostic scenarios, and an
evaluation component that computes performance
metrics based on the results from diagnostic algo-
rithm execution.

The process to set up the framework in order to
perform comparison/evaluation of a selected set of
diagnostic algorithms on a specific physical system
is as follows:

1. The system is specified in an XML file called
the System Catalog. The catalog includes
the system’s components, connections, com-

3

ponents’ operating modes, and a textual
description of component behavior in each
mode.

2. The set of sensor points is chosen and sam-
ple data for nominal and fault scenarios are
generated.

3. DA developers use the system catalog and
sample data to create their algorithms using
a predefined Application Programming Inter-
face (API) in order to receive sensor data and
send the diagnosis results. The DXF API is
described later in this section.

4. A set of test scenarios (nominal and faulty) is
selected to evaluate the DAs.

5. The run-time architecture is used to execute
the DAs on the selected test scenarios in a
controlled experiment setting, and the diag-
nosis results are archived.

6. Selected metrics are computed by comparing
actual scenarios and diagnosis results from
DAs. These metrics are then used to com-
pute secondary metrics.

In the following subsections we describe the con-
stituent pieces of our framework in more detail.
The next subsection describes the various repre-
sentation languages defined for the framework. We
then describe the run-time architecture including
the sequence of events and the messages exchanged
among the various components and finally we de-
scribe a set of representative metrics that measure
diagnostic performance.

3.1 DXF Data Structures

In what follows we describe the syntax and seman-
tics of the relevant DXF data structures as well as
some design rationale.

3.1.1 System Description
We realize that it is impossible to avoid bias to-
wards certain diagnostic algorithms and method-
ologies when providing system descriptions. De-
spite attempts to create a general modeling lan-
guage1, there is no widely agreed way to represent
models and systems. On the other hand, designing
a diagnostic framework which is fully agnostic to-
wards the system description is impossible as there
would be no way to communicate components or
system parts and to compute diagnostic metrics.
As a compromise, we have chosen a minimalistic
approach, providing formal descriptions of the sys-
tem topology and component modes only.

The formal part of the DXF system descrip-
tion does not provide all information for building
a model. The user may be provided with non-
formalized external information, e.g., nominal and
faulty functionality of components. This informa-
tion may be provided in textual, programmatic or
any other well-understood format. In the future

1For examples see Feldman, Provan, and van
Gemund (2007) and the references therein.

we may try to extend our XML schema in yet an-
other attempt of providing a complete modeling
language beyond interconnection topology.

The XML system description is primarily in-
tended to provide a common set of identifiers for
components and their modes of operation within
a given system. This is necessary to communi-
cate sensor data and diagnoses. Additionally, ba-
sic structural information is provided in the form
of component connections. Behavioral informa-
tion is limited to a brief textual description of each
component and its modes, leaving DA developers
to deduce behavior from the system’s sample data.
This is done to avoid bias towards any diagnostic
approach.

System Topology: DXF uses a graph-like repre-
sentation to specify the physical connectivity
of the system where nodes represent compo-
nents of a system and arcs capture the con-
nectivity between components.

Component Types: Each component in a sys-
tem description refers to a component type.
Note that in DXF, sensors do not imply spe-
cial assumptions, i.e., sensors fail in the same
way as “ordinary” components. A sensor, of
course, should specify the data type it returns
in order for DXF to send sensor readings to
the DA under evaluation. A component type
contains at least the following information:

• a name (identifier)
• an optional (textual) description
• a flag which specifies if this component

type is a sensor
• a reference to a data structure describ-

ing the modes for the components of this
type (both nominal and faulty)
• (sensors only) a data type of the sensor
• (sensors only) a range of the sensor

Component Mode Groups: Component oper-
ating modes are organized in mode groups.
More than one component can refer to the
same specific group. Each component type
specifies a mode group. Each mode in a mode
group contains:

• a name (identifier)
• an optional (textual) description
• a flag specifying if the mode is nominal

or faulty

The details of the system description formats
are provided in Appendix B.

3.1.2 API Data Types
In DXF, the run-time communication is per-
formed using a messaging framework. Messages
are exchanged as ASCII text over TCP/IP. API
calls for parsing, sending, and receiving messages
are provided with the framework, but developers
may choose to send and receive messages directly
through the underlying TCP/IP interface. This
allows developers to use their programming lan-
guage of choice, rather than being forced into the
languages of the provided APIs.

4

Every message contains a millisecond times-
tamp indicating the time at which the message was
sent. Though there are additional message types,
the most important messages for the purpose of
performance evaluation are the sensor data mes-
sage, command message, and diagnosis message,
described below (the details of the messaging for-
mats are provided in Appendix C):

Sensor/Command Data: Sensor data are de-
fined broadly as a map of sensor IDs to sensor
values (observations). Sensor values can be of
any type; currently the framework allows for
integer, real, Boolean, and string values. The
type of each observation is indicated by the
system’s XML catalog.
Commandable components contain an addi-
tional entry in the system catalog specify-
ing a command ID and command value type
(analogous to sensor value type). The com-
mand message represents the issuance of a
command to the system. In the ADAPT sys-
tem, for example, the message (EY144CL,
true) signifies that relay EY144 is being com-
manded to close. EY144CL is the command
ID, and true is the command value (in this
case, a Boolean value).

Candidates: The diagnostic algorithm’s output
(i.e., estimate of the physical status of the sys-
tem) is standardized to facilitate the genera-
tion of common data sets and the calculation
of the performance metrics. The diagnostic
message contains:

• a timestamp value indicating when the
diagnosis has been issued by the algo-
rithm
• a list of diagnostic candidates (a candi-

date fault set may include a single candi-
date with a single or multiple faults; or
multiple candidates each with a single or
multiple faults)
• a detection flag (Boolean) as to whether

the diagnosis system has detected a fault
• an isolation flag (Boolean) as to whether

the diagnosis system has isolated a can-
didate or a set of candidates

In addition, each candidate in the candi-
date set has an associated weight. Candi-
date weights are normalized by DXF such
that their sum for any given diagnosis is 1.

3.2 Run-Time Architecture

Figure 2 shows an overview of the DXF run-time
architecture, its software components and data
flows.
We next provide a brief description of each of the
DXF’s software components.

Scenario Loader (SL): SL is the main entry
point for running the diagnostic scenarios.
SL executes the Scenario Data Source, the
Scenario Recorder, and all Diagnostic Al-
gorithms. SL ensures system stability and
clean-up upon scenario completion and is the

data source

scenario
loader

scenario diagnosis
algorithm

scenario
recorder

scenario

results
evaluator

sends fault injection
and sensor data

sends diagnoses

sends commands
and sensor values

spawns all processes

processed
by

Figure 2: DXF run-time architecture

only long-living process. The Scenario Data
Source, Scenario Recorder and all Diagnos-
tic Algorithms are spawned for each scenario
and a Diagnostic Algorithm is forcibly killed
if it does not terminate after a predetermined
time-out.

Scenario Data Source (SDS): The SDS mod-
ule provides scenario data from previously
recorded datasets. The provenance of the
data (whether hardware or simulation) de-
pends on the system in question. A scenario
dataset contains sensor readings, commands
(note that the majority of classical MBD lit-
erature does not distinguish commands from
observations), and fault injection information
(to be sent exclusively to SR). SDS publishes
data following a wall-clock schedule specified
by timestamps in the scenario files.

Scenario Recorder (SR): SR receives fault in-
jection data and diagnosis data into a results
file. The results file contains a number of
time-series which are described below. These
time-series are used by the evaluation mod-
ule for the computation of metrics. SR is
the main timing authority, i.e., it timestamps
each message upon arrival before recording it
to the results file.

Diagnostic Algorithm (DA): A DA receives
sensor and command data, performs diagno-
sis, and sends the diagnosis results back. As
long as the DAs comply to the provided API,
there are no restrictions on a DA; for exam-
ple a DA may read precompiled data, or use
external (user supplied) libraries, etc.

Evaluator: The evaluator computes a number of
predefined metrics (see Sec. 3.3).

Consider the progression of a single diagnostic sce-
nario. A typical one is shown in Fig. 3, where
the fault injections, detection, and isolation are
all treated as signals. These signals define a num-
ber of time points and intervals, as is seen below.

In the beginning of each scenario, a DA is given
some startup time to initialize, read data, etc.
Even though sensor observations could be avail-
able during startup, fault injections are not al-

5

· · ·· · ·

diagnosis

· · ·

startup

· · ·

titfirtffi n

low

t

high

· · ·

1 2

fault 1

signal

fault 2

signal

detection

signal (D)

isolation

signal (I)

shutdown

tdt⋆

1 , t⋆

2

Figure 3: Signals and events during the develop-
ment of a sample diagnostic scenario

lowed during this interval. Fault injection and di-
agnosis take place during the diagnosis interval.
Finally, a DA is given some shutdown time to ter-
minate before being killed.

Table 1 summarizes the data collected by the SR
for each scenario. These data are used for comput-
ing the various metrics discussed in Sec. 3.3. The
time of first detection td is derived from the detec-
tion signal D while the time of the last isolation is
computed from the isolation signal I.

Var. Type Description Origin

td time-stamp first detection DA
ti time-stamp last isolation DA
Cs real startup CPU cycles SL
C time-series CPU cycles per step SL
M time-series memory in use SL
ω⋆ set injected fault SDS
t⋆ time-stamp first fault injection SDS
t⋆i time-stamp injection of fault i SDS
Ω set of sets candidate diagnoses DA
W set of reals candidate weights DA

Table 1: Scenario execution summary data

The set Ω = {ω1, ω2, . . . , ωn} contains all diag-
noses computed by the DA at time ti. If a DA
never asserts the isolation signal I (i.e., ti =
∞), it is assumed that Ω = ∅. Each candidate
in Ω is accompanied by a weight W . We de-
note the set of weights of all diagnoses in Ω as
W = {W (ω1), W (ω2), . . . , W (ωn)}. The SR en-
sures that

∑

ω∈Ω

W (ω) = 1 (1)

by dividing each weight W (ω) with the sum of all
weights. If a DA fails to provide W , it is assumed
that all diagnoses are of the same weight.

In addition to the time-points defined in Ta-
ble 1, the isolation signal in Fig. 3 shows the time
tffi the DA has isolated a fault for the first time,
and the time tfir the DA has retracted its isolation
assumption (for example because more faults are

expected). Note that tffi and tfir are not currently
used by the evaluator for computing the metrics.

3.3 Diagnostic Performance Metrics

The metrics for evaluating diagnostic algorithm
performance depend on the particular use of the
diagnostic system, the users involved, and their
objectives.

Several institutions and organizations have pro-
posed metrics that measure diagnostic perfor-
mance (Committee E-32, 2008; DePold, Siegel, &
Hull, 2004; DePold, Rajamani, Morrison, & Pat-
tipati, 2006; Metz, 1978; Orsagh et al., 2002; Roe-
mer et al., 2005; Bartyś et al., 2006). Among
those, the SAE’s “Health and Usage Monitoring
Metrics” (Committee E-32, 2008) defines proba-
bility of detection and probability of false alarms
as key indices for evaluating diagnostic algorithm
performance.

In Orsagh et al. (2002), the performance met-
rics are defined separately for detection, and isola-
tion. For detection, the metrics include thresholds,
accuracy, reliability, sensitivity to load, speed, or
noise, and stability. The isolation metrics include
the detection metrics, but also include measures
for discrimination and repeatability.

In this paper, our goal has been to define a
number of metrics and to give guidelines for their
use. For DXF, we make a distinction between de-
tection, isolation, and computational performance
and highlight metrics for each category. In general
several other classes of metrics are possible, includ-
ing cost/utility metrics, effort (in building systems
for example) metrics and also other categories such
as fault identification and fault recovery metrics.
The expectation is that as the DXF evolves a com-
prehensive list of desired metric classes and cate-
gories will be developed to aid framework users
in choosing the performance criteria they want to
measure.

Metric Name Class

Mfd fault detection time detection
Mfn false negative scenario detection
Mfp false positive scenario detection
Mda scenario detection accu-

racy
detection

Mfi fault isolation time isolation
Merr classification errors isolation
Mutl utility isolation
Msat consistency isolation
Mcpu CPU load computational
Mmem memory load computational

Table 2: Metrics summary

For the first implementation of the DXF, we de-
fined 10 metrics which are summarized in Table 2.
These metrics are based on extensive survey of lit-
erature and talking to experts from various fields
(Kurtoglu, Mengshoel, & Poll, 2008). These met-
rics are defined next.

6

3.3.1 Detection Metrics
The distinction between detection and isolation
has practical importance. A DA may announce
a fault detection before it knows the root cause
of failure (for example, a detection announcement
can be based solely on surpassing sensor threshold
values). A detection signal cannot be retracted by
a DA while it is legal to retract an isolation an-
nouncement when more faults are expected. The
detection metrics include:

Fault Detection Time The fault detection
time (the reaction time for a diagnostic engine to
detect an anomaly) is directly measured as:

Mfd = td (2)

The fault detection time is reported in milliseconds
and is computed only for non-nominal scenarios
for which a DA asserts the time detection signal
at least once.

False Negative Scenario The false negative
scenario metric measures whether a fault is missed
by a diagnostic algorithm and is defined as:

Mfn =

{

1, if td =∞
0, otherwise (3)

False Positive Scenario The false positive sce-
nario metric penalizes DAs which announce spu-
rious faults and is defined as:

Mfp =

{

1, if td < t⋆

0, otherwise (4)

where t⋆ =∞ for nominal scenarios (i.e., scenarios
during which no fault is injected).

Note that the above two metrics (Mfn and Mfp)
are computed for each scenario and their compu-
tation is based on the times of injecting and an-
nouncing the fault. We also have false negative
and false positive components in the context of
individual diagnostic candidates (recall that a DA
sends a set of diagnostic candidates at isolation
time) which we will discuss later in this paper.

Scenario Detection Accuracy The scenario
detection accuracy metric is computed from Mfn
and Mfp:

Mda = 1−max(Mfn, Mfp) (5)

Mda is 1 if the scenario is true positive or true
negative and 0 otherwise (equivalently, Mda = 0
if Mfn = 1 or Mfp = 1, and Mda = 1 otherwise).
Mda splits all scenarios into “true” and “false”. In-
correct scenarios are further classified into false
positive (Mfp) and false negative (Mfn). Correct
scenarios are true positive if there are injected
faults and true negative otherwise (the latter sep-
aration into true positives and true negatives is
rarely of practical importance).

3.3.2 Isolation Metrics

Computation of isolation metrics is more involved
due to the fact that an isolation can be retracted.
Furthermore, an isolation event contains a set of
diagnostic candidates and we need metrics that
compare this set of candidates to the injected
fault. Accordingly, we have defined several met-
rics which are computed from the set of diagnostic
candidates Ω and the injected fault ω∗ (classifica-
tion errors, and utility metrics). Consider a single
diagnostic candidate ω ∈ Ω. Both the candidate ω
and the injected fault ω⋆ are sets of components.
The intersection of those two sets are the properly
diagnosed components. The false positives are the
components that have been considered faulty but
are not actually faulty. The false negatives are the
components that have been considered healthy but
are actually faulty. Figure 4 shows how ω and ω⋆

partition all components into four sets.
False positives and false negatives in this con-

text relate to individual candidates, i.e., misclassi-
fied components in a single diagnostic candidate.
There are also scenario-based false negative and
false positive metrics (defined earlier in this sec-
tion), which summarize whole scenarios and are
not to be confused with the false positives and
false negatives in the context of isolation metrics.

For brevity we use the notation in Table 3 for
the Fig. 4 sets.

Var. Set Description

f |COMPS| all components
n |ω⋆ \ ω| false negatives
N |COMPS \ ω| the set of healthy compo-

nents from the viewpoint
of the DA

n̄ |ω \ ω⋆| false positives
N̄ |ω| the set of faulty compo-

nents from the viewpoint
of the DA

Table 3: Notation for sizes of some frequently used
sets

Based on the representation given in Figure 4,
the meaning of false positives and false negatives
can be interpreted differently depending on what
the diagnosis results are supporting (abort de-
cisions, ground support, fault-adaptive control,
etc.). Researchers have proposed different meth-
ods to assess the meaning of isolation accuracy and
its practical and economical implications.

DePold et al. (2004) introduced metrics based
on the receiving operating characteristic (ROC)
analysis (Metz, 1978), which illustrates the trade-
off space between the probability of false alarm
and the probability of detection for different signal
to noise ratio (SNR) levels. The method is used
to test the relative accuracy of diagnostic systems
based on different threshold settings. Later, they
also proposed a combined metric (DePold et al.,
2006) that accounts for consequential event costs

7

positives

ω ∩ ω
⋆

true

negatives

COMPS \ {ω ∪ ω
⋆}

true

COMPSω
⋆ (injected fault)

ω
(c

a
n
d
id

a
te

)
ω

⋆ \ ω

false
negatives

ω \ ω
⋆

false
positives

Figure 4: The diagnostic candidate ω and the injected fault ω⋆ partition COMPS into four sets

including missed detection, false alarms, and mis-
diagnosis. Another widely used metric for isola-
tion accuracy is the Kappa Coefficient (Commit-
tee E-32, 2008). It is based on the construction
of a confusion matrix that summarizes diagnostic
results produced by a reasoner over a number of
test/use cases. In essence, the Kappa Coefficient
measures the ability of an algorithm to discrimi-
nate among many fault candidates.

In this paper, we take a simplistic approach
and assume that false positives and false nega-
tives have an equal cost for the diagnostic task
and operations. The isolation metrics include (for
a detailed discussion and derivation of the isola-
tion metrics, see Appendix A):

Fault Isolation Time Consider an injected
fault ω⋆ = {c1, c2, . . ., cn} with the individ-
ual component faults injected at times T ⋆ =
〈t⋆1, t

⋆
2, . . . , t

⋆
n〉. Next, from the isolation signal,

we construct a sequence of isolation times for
each component. This sequence containing time-
stamps of rising edges of the isolation signal is
denoted as Ti (Ti = 〈t1, t2, . . . , tn〉). Note that
t⋆k < ti for 1 ≤ k ≤ n. The fault isolation time is
then computed as:

Mfi =
1

n

n
∑

k=1

tk − t⋆k (6)

If there is no isolation for specific fault (i.e., a
fault is missed) then there is no difference tk − t⋆k
computed for that fault. E.g., if in a fault ω⋆ =
〈c1, c2, c3〉, c1 is isolated, c2 is not, and c3 is; the
isolation time t2−t⋆2 is undefined and not included
in the average (n = 2).

The fault isolation time is reported in millisec-
onds and is computed only for non-nominal sce-
narios for which a DA asserts the time isolation
signal at least once.

Classification Error The classification error
metric is defined as:

Merr =
∑

ω∈Ω

W (ω)(|ω ⊖ ω⋆|) (7)

In Eq. (7), ω⊖ω⋆ denotes the symmetric difference
of the ω and ω⋆ sets, i.e., the number of misclassi-
fied components. Note that |ω ⊖ ω⋆| = n + n̄ and
f = N + N̄ .

Utility The utility metric measures the work for
correctly identifying all false negatives and false
positives in a diagnostic candidate. Alternatively,
the utility metric measures the expected number
of calls to a testing oracle that always determines
correctly the health state of a component. Note
that this metric assumes an equal cost for fixing a
false negative and a false positive. The derivation
of the utility metric is given in Appendix A. The
utility metric (per candidate) is:

mutl = 1−
n(N + 1)

f(n + 1)
−

n̄(N̄ + 1)

f(n̄ + 1)
(8)

Computing a weighted average of mutl gives us the
“per scenario” utility metric:

Mutl =
∑

ω∈Ω

W (ω)mutl(ω
⋆, ω) (9)

The utility metric is, in fact, a combination of two
“half-utilities”–the system repair utility and the di-
agnosis repair utility. The latter are defined as
secondary metrics in Sec. 3.3.4 and discussed in
detail in Appendix A.

Note that for Ω = ∅, the framework automati-
cally assumes a single “all-healthy”diagnostic can-
didate with weight 1 at the time of isolation.
This affects the Merr and Mutl metrics. For ex-
ample, in a non-nominal false-negative scenario,
Merr = |ω⋆|.

8

Consistency The next metric comes from MBD
(de Kleer, Mackworth, & Reiter, 1992). It only ap-
plies to systems for which (1) there is a formally
defined system description (model), (2) one can
derive a formally defined observation from the sen-
sor data, and (3) the notion of consistency is for-
mally defined. We compute the consistency metric
for the synthetic models and scenarios.

Consider a model SD and an observation α (α is
derived from the sensor data at time t∗). If SD and
α can be expressed as sentences in propositional
logic (as is the case with the synthetic models and
scenarios) then the set of consistent diagnoses is
defined as:

Ω⊤ = {ω ∈ Ω : SD ∧ α ∧ ω 6|=⊥} (10)

The set Ω⊤ can be computed from SD, α, and
Ω by using a DPLL-solver (Davis, Logemann, &
Loveland, 1962). The consistency metric can be
computed from Ω⊤, W and the injected fault ω⋆:

Msat =
∑

ω∈Ω⊤

W (ω) (11)

Msat is a measure of how much probability mass a
DA associates with diagnoses consistent with the
observations.

3.3.3 Computational Metrics
CPU Load The CPU load during an experi-
ment is computed as:

Mcpu = Cs +
∑

c∈C

c (12)

where Cs is the amount of CPU time spent by
a DA during startup and C is a vector with the
actual CPU time spent by the DA at each time
step. The CPU load is reported in milliseconds.

Memory Load The memory load is defined as:

Mmem = max
m∈M

m (13)

where M is a vector with the maximum memory
size allocated at each step of the diagnostic session.
The memory load is reported in Kb.

3.3.4 Secondary Metrics
The intuition behind classification errors can be
realized with multiple metrics. For example, a di-
agnostician may compute the isolation accuracy
using:

Mia =
∑

ω∈Ω

W (ω)(f − |ω ⊖ ω⋆|) (14)

In general a diagnostician has to perform extra
work to “verify” all misdiagnosed components in
ω. Suppose that the diagnostician has access to a
test oracle that states if a component c is healthy
or faulty. The system repair utility is then de-
fined as normalized average number of oracle calls

for identifying all false negative components and
is defined as:

msru = 1−
n(N + 1)

f(n + 1)
(15)

The “per scenario” system repair utility is the de-
fined as:

Msru =
∑

ω∈Ω

W (ω)msru(ω⋆, ω) (16)

Similarly, a diagnostician has to eliminate all false
positive components in a candidate. This is re-
flected in the diagnosis repair utility:

mdru = 1−
n̄(N̄ + 1)

f(n̄ + 1)
(17)

The diagnosis repair utility for a set of diagnostic
candidates is defined as:

Mdru =
∑

ω∈Ω

W (ω)mdru(ω⋆, ω) (18)

Mutl, Msru, and Mdru are discussed in detail in
Appendix A.

The choice of which utility metric is best for
a particular use depends on the relative costs of
the available repair actions. For example, if com-
ponents are nearly free, but the act of replacing
them is expensive then it makes no sense to iden-
tify which erroneously replaced components were
actually correct (thus msru is preferred).

3.3.5 System Metrics
The metrics Mfn, Mfp, Mda, Mfd, Mfi, Merr, Mutl,
Msat, Mcpu, Mmem, Mia, Msru, and Mdru are based
on a single scenario. To receive “per system” re-
sults we combine the metrics of each scenario using
unweighted average. For example, if a system SD
is tested with scenarios S = {S1, S2, . . . , Sn}, the
“per system” utility of SD is computed as:

M̄utl =
∑

S∈S

1

|S|
Mutl(SD, S) (19)

where Mutl(SD, S) is the “per scenario” utility of
system SD and scenario S.

The rest of the “per system” metrics (M̄fn, M̄fp,
M̄da, M̄fd, M̄fi, M̄err, M̄sat, M̄cpu, M̄mem, M̄ia,
M̄sru, and M̄dru) are defined in a way analogous
to M̄utl.

Note that Mfn, Mfp, and Mda are called false
negative scenario, false positive scenario and sce-
nario detection accuracy, respectively. The analo-
gous “per system” metrics M̄fn, M̄fp, and M̄da are
called false negative rate, false positive rate, and
detection accuracy. M̄da, for example, represents
the ratio of the number of correctly classified cases
to the total number of cases. The latter “per sys-
tem” metrics (M̄fn, M̄fp, and M̄da) are equivalent
to the ones in Kurtoglu et al. (2009). In this paper
we first define each metric “per scenario” and then
“per system”.

9

4 EMPIRICAL EVALUATION

In order to evaluate the framework presented in
the previous section we selected two case stud-
ies. The first case study was performed on an
Electrical Power System (EPS) testbed located in
the ADAPT Lab of NASA Ames Research Cen-
ter (Poll, Patterson-Hine, Camisa, Garcia, Hall,
Lee, Mengshoel, Neukom, Nishikawa, Ossenfort,
Sweet, Yentus, Roychoudhury, Daigle, Biswas, &
Koutsoukos, 2007). This system mimics compo-
nents and configurations in a power system that
might be found on an aerospace vehicle. The
second case study was performed on a set of 14
synthetic systems called the 74XXX/ISCAS85 cir-
cuits (Brglez & Fujiwara, 1985), which are purely
combinational, i.e., they contain no flip-flops or
other memory elements, and represent well-known
benchmark models of ISCAS85 circuits.

The empirical evaluation as part of the above
two case studies employed 13 diagnostic algo-
rithms (DAs) (Kurtoglu et al., 2009). The results
from the DAs were used to compute metrics that
were in turn used to evaluate the DAs performance
on the aforementioned systems. We first present
the DAs used in the evaluation and then present
the two case studies.

4.1 Diagnostic Algorithms

We have experimented with a total of 13 DAs (see
Table 4 for an overview). In what follows we pro-
vide a brief description of each DA.

DA Systems Algorithm Type

FACT AL model-based
Fault Buster A,AL statistical
GoalArt A flow-models
HyDE A,AL model-based
HyDE-S AL model-based
Lydia S,A,AL model-based
NGDE S,AL model-based
ProADAPT A,AL probabilistic
RacerX AL change detection
RODON S,A,AL model-based
RulesRule AL rule-based
StanfordDA A optimization
Wizards of Oz A,AL model-based

Table 4: Diagnostic Algorithms (S = synthetic, A
= ADAPT, AL = ADAPT-Lite)

FACT: FACT (Roychoudhury, Biswas, & Kout-
soukos, 2009) is a model-based diagnosis sys-
tem that uses hybrid bond graphs, and mod-
els derived from them, at all levels of di-
agnosis, including fault detection, isolation,
and identification. Faults are detected using
an observer-based approach with statistical
techniques for robust detection. Faults are
isolated by matching qualitative deviations
caused by fault transients to those predicted
by the model. For systems with few operating

configurations, fault isolation is implemented
in a compiled form to improve performance.

Fault Buster: Fault Buster is based on a combi-
nation of multivariate statistical methods, for
the generation of residuals. Once the detec-
tion has been done a neural network performs
classification for computing isolation.

GoalArt: GoalArt Diagnostic System (Larsson,
1996) is based on multilevel flow models,
which are crisp descriptions of flows of mass,
energy, and information. It is a fast root cause
analysis with linear computational complex-
ity. Its main advantage is that it is very ef-
ficient to knowledge engineer a model. The
algorithm has been proven in several commer-
cial applications.

HyDE: HyDE (Hybrid Diagnosis Engine) (Na-
rasimhan & Brownston, 2007) is a model-
based diagnosis engine that uses consistency
between model predictions and observations
to generate conflicts which in turn drive the
search for new fault candidates. HyDE uses
discrete models of the system and a discretiza-
tion of the sensor observations for diagnosis.

HyDE-S: HyDE-S uses the HyDE system but
runs it on interval valued hybrid models and
the raw sensor data.

Lydia: Lydia is a declarative modeling language
specifically developed for Model-Based Diag-
nosis (MBD). The language core is proposi-
tional logic, enhanced with a number of syn-
tactic extensions for ease of modeling. The
accompanying toolset currently comprises a
number of diagnostic engines and a simula-
tor tool (Feldman, Provan, & van Gemund,
2009).

NGDE: An Allegro Common Lisp implementa-
tion of the classic GDE. NGDE (de Kleer,
2009) uses a minimum-cardinality candidate
generator to construct diagnoses from con-
flicts. For ADAPT-Lite it uses interval con-
straints. No model of dynamics.

ProADAPT: ProADAPT (Mengshoel, 2007)
processes all incoming environment data (ob-
servations from a system being diagnosed),
and acts as a gateway to a probabilistic in-
ference engine. The inference engine uses an
Arithmetic Circuit evaluator which is com-
piled from Bayesian network models. The pri-
mary advantage of using arithmetic circuits is
speed, which is key in resource bounded envi-
ronments.

RacerX: RacerX is a detection-only algorithm
which detects a percentage change in indi-
vidual filtered sensor values to raise a fault
detection flag.

RODON: RODON (Karin, Lunde, & Münker,
2006) is based on the principles of the Gen-
eral Diagnostic Engine (GDE) as described by
de Kleer and Williams (1987) and the G+DE

10

(Heller & Struss, 2001). RODON uses contra-
dictions (conflicts) between the simulated and
the observed behavior to generate hypotheses
about possible causes for the observed behav-
ior. If the model contains failure modes in ad-
dition to the nominal behavior, these can be
used to verify the hypotheses, which speeds
up the diagnostic process and improves the
results.

RulesRule: RulesRule is a rule-based isolation-
only algorithm. The rule base was developed
by analyzing the sample data and determin-
ing characteristic features of faults. There is
no explicit fault detection though isolation
implicitly means that a fault has been de-
tected.

StanfordDA: StanfordDA is an optimization-
based approach to estimating fault states in
DC power systems. The model includes faults
changing the system topology along with sen-
sor faults. The approach can be considered as
a relaxation of the mixed estimation problem.
The authors have developed a linear model of
the circuit and pose a convex problem for es-
timating the faults and other hidden states.
A sparse fault vector solution is computed
by using L1 regularization (Zymnis, Boyd, &
Gorinevsky, 2009).

Wizards of Oz: Wizards of Oz (Grastien &
Kan-John, 2009) is a consistency-based algo-
rithm. The model of the system completely
defines the stable (static) output of the sys-
tem in case of normal and faulty behavior.
Given a new command or new observations,
the algorithm waits for a stable state and
computes the minimum diagnoses consistent
with the observations and the previous diag-
noses.

4.2 Case Study I: ADAPT EPS

We next describe the ADAPT EPS system, the
diagnostic scenarios and the experimental results.

4.2.1 System Description
The ADAPT EPS testbed provides a means for
evaluating DAs through the controlled insertion
of faults in repeatable failure scenarios. The EPS
testbed incorporates low-cost commercial off-the-
shelf (COTS) components connected in a system
topology that provides the functions typical of
aerospace vehicle electrical power systems: en-
ergy conversion/generation (battery chargers), en-
ergy storage (three sets of lead-acid batteries),
power distribution (two inverters, several relays,
circuit breakers, and loads) and power manage-
ment (command, control, and data acquisition).

The EPS delivers Alternating Current (AC) and
Direct Current (DC) power to loads, which in an
aerospace vehicle could include subsystems such as
the avionics, propulsion, life support, environmen-
tal controls, and science payloads. A data acqui-
sition and control system commands the testbed
into different configurations and records data from

sensors that measure system variables such as volt-
ages, currents, temperatures, and switch positions.
Data are presently acquired at a 2 Hz rate.

The scope of the ADAPT EPS testbed used in
this case study is shown Fig. 5. Power storage
and distribution elements from the batteries to the
loads are within scope; there are no power gener-
ation elements defined in the system catalog. We
have created two systems from the same physical
testbed, ADAPT-Lite and ADAPT:

ADAPT-Lite ADAPT-Lite includes a single
battery and a single load as indicated by the
dashed lines in the schematic (Fig. 5). The ini-
tial configuration for ADAPT-Lite data has all re-
lays and circuit breakers closed and no nominal
mode changes are commanded during the scenar-
ios. Hence, any noticeable changes in sensor val-
ues may be correctly attributed to faults injected
into the scenarios. Furthermore, ADAPT-Lite is
restricted to single faults.

ADAPT ADAPT includes all batteries and
loads in the EPS. The initial configuration for
ADAPT has all relays open and nominal mode
changes are commanded during the scenarios. The
commanded configuration changes result in ad-
justments to sensor values as well as transients
which are nominal and not indicative of injected
faults, in contrast to ADAPT-Lite. Finally, mul-
tiple faults may be injected in ADAPT. The dif-
ferences between ADAPT-Lite and ADAPT are
summarized in Table 5.

Aspect ADAPT-Lite ADAPT

|COMPS| 37 173
of modes 93 430
relays initially closed open
initial state of the cir-
cuit-breakers

closed closed

nominal mode changes no yes
multiple faults no yes

Table 5: ADAPT and ADAPT-Lite differences

4.2.2 Diagnostic Challenges
The ADAPT EPS testbed offers a number of chal-
lenges to DAs. It is a hybrid system with multiple
modes of operation due to switching elements such
as relays and circuit breakers. There are contin-
uous dynamics within the operating modes and
components from multiple physical domains, in-
cluding electrical, mechanical, and hydraulic. It is
possible to inject multiple faults into the system.
Furthermore, timing considerations and transient
behavior must be taken into account when design-
ing DAs. For example, when power is input to
the inverter there is a delay of a few seconds be-
fore power is available at the output. For some
loads, there is a large current transient when the
device is turned on. System voltages and currents
depend on the loads attached, and noise in sensor

11

E265

ST

265

CB136

CB236

CB336

CB266

CB166

ESH

170

EY160

ESH

160A
E161

IT161

E165

ST

165

EY171

E167

IT167

ESH

171

EY172

ESH

172

EY170

EY174

ESH

174

EY175

ESH

175

EY173

ESH

173

EY183

ESH

183

EY184

ESH

184

L1A

L1B

L1C

L1D

L1E

L1F

L1G

L1H

Load Bank 1

120V AC >>

24V DC >>

Battery Cabinet
TE

133

BAT1

TE

128

E135

EY141

E140

EY144

IT140

ESH

141A

ESH

144A
TE

129

ISH

136

ISH

162

CB162

ISH

166

ISH

180

CB180

ESH

270

EY260

ESH

260A
E261

IT261
EY271

E267

IT267

ESH

271

EY272

ESH

272

EY270

EY274

ESH

274

EY275

ESH

275

EY273

ESH

273

EY283

ESH

283

EY284

ESH

284

L2A

L2B

L2C

L2D

L2E

L2F

L2G

L2H

Load Bank 2

120V AC >>

24V DC >>

ISH

262

CB262

ISH

266

ISH

280

CB280

BAT2

TE

228

E235

EY241

E240

EY244

IT240

ESH

241A

ESH

244A
TE

229

ISH

236

BAT3

TE

328

E335

EY341

E340

EY344

IT340

ESH

341A

ESH

344A
TE

329

ISH

336

E142

E242

XT167

XT267

IT181

IT281

TE

500

TE

501

TE

502

LT

500

TE

505

TE

506

TE

507

LT

505

ST

515

FT

525

TE

511

FT

520

TE

510

ST

516

LGT400

LGT401

LGT402

LGT405

LGT406

LGT407

FAN415

FAN480

LGT481

PMP425

LGT411

DC482

PMP420

LGT410

FAN483

LGT484

FAN416

DC485

E181

E281

INV

1

INV

2

ADAPT-Lite

ESH

ISHE

IT

FT LT

ST

TE

XT

Voltage

Relay Position

Feedback

Circuit Breaker

Position

Feedback

Current

Flow Light

Frequency/Speed

Temperature

Phase Angle

Sensor Symbols

Figure 5: A schematic overview of the ADAPT EPS

12

data increases as more loads are activated. Mea-
surement noise occasionally exhibits spikes and is
non-Gaussian. The 2 Hz sample rate limits the
types of features that may be extracted from mea-
surements. Finally, there may be insufficient in-
formation and data to estimate parameters of dy-
namic models in certain modeling paradigms.

4.2.3 Fault Injection and Scenarios
ADAPT supports the repeatable injection of faults
into the system in three ways:

Hardware-Induced Faults: These faults are
physically injected at the testbed hardware.
A simple example is tripping a circuit breaker
using the manual throw bars. Another is us-
ing the power toggle switch to turn off an
inverter. Faults may also be introduced in
the loads attached to the EPS. For example,
the valve can be closed slightly to vary the
back pressure on the pump and reduce the
flow rate.

Software-Induced Faults: In addition to fault
injection through hardware, faults may be in-
troduced via software. Software fault injec-
tion includes one or more of the following: (1)
sending commands to the testbed that are not
intended for nominal operations; (2) blocking
commands sent to the testbed; and (3) alter-
ing the testbed sensor data.

Real Faults: In addition the aforementioned two
methods, real faults may be injected into the
system by using actual faulty components. A
simple example includes a burned out light
bulb. This method of fault injection was not
used in this study.

For results presented in this case study, only
abrupt discrete (change in operating mode of com-
ponent) and parametric (step change in parameter
value) faults are considered. Nominal and failure
scenarios are created using hardware and software-
induced fault injection methods. The diagnostic
algorithms are tested against a number of scenar-
ios, each approximately four minutes in length.

The ADAPT-Lite experiments include 36 nom-
inal and 56 single-fault scenarios. Table 6 sum-
marizes the type of faults used for ADAPT-Lite.

The ADAPT experiments have 48 nominal and
111 fault scenarios, which include single-fault,
double-fault, and triple-faults. Figure 6 shows the
fault-cardinality distribution of the ADAPT sce-
narios. Table 7 summarizes the type of faults used
for ADAPT. The majority of faults involve sensors
(102) and loads (30).

4.2.4 Experimental Results
We next compute the metrics described in Sec. 3.3
for the ADAPT-Lite and ADAPT scenarios.

ADAPT-Lite The DA benchmarking results
for ADAPT-Lite are shown in Table 8, with graph-
ical depictions of some of the tabular data pre-
sented in Fig. 7. Figure 7 shows (1) Merr by DA

Type Subtype Fault #

battery - degraded 3

circ. breaker - failed-open 5

inverter - failed-off 2

load fan
failed-off 2
over-speed 2
under-speed 2

relay - stuck-open 6

sensor

position stuck 11

current, phase offset 12
angle, speed, stuck 11
temp., voltage

Total: 56

Table 6: ADAPT-Lite faults

41 double-fault

scenarios (26%)

51 single-fault

scenarios (32%)

19 triple-fault scenarios (12%)48 nominal

scenarios

(30%)

Figure 6: Fault-cardinality distribution of the
ADAPT scenarios

(top-left), (2) Msru and Mdru by DA (top-right),
(3) Mfd and Mfi by DA (bottom-left), and (4) Mfn
and Mfp (bottom-right). No DA dominates over
all metrics used in benchmarking; nine of eleven
DAs tested are best or second best with respect to
at least one of the metrics.

The bottom-right plot of Fig. 7 shows the false
positive and false negative rates. The correspond-
ing detection accuracy can be seen in Table 8. As
is evident from the definition of the metrics in
Sec. 3.3, a DA that has low false positive and neg-
ative rates has high detection accuracy. False pos-
itives are counted in the following two situations:
(1) for nominal scenarios where the DA declares a
fault; and (2) for faulty scenarios where the DA de-
clares a fault before any fault is injected. Noise in
the data and incorrect models are the main causes
of false positives. For example, the leftmost plot
of Fig. 8 shows a nominal run with spike in sensor
IT240 (battery 2 current); most of the DAs de-
clare a false positive for this scenario. Many false
negatives are caused by scenarios in which a sen-
sor reading is stuck within the nominal range of
the sensor. The middle plot of Fig. 8 shows an ex-
ample of a sensor-stuck failure for voltage sensor
E261, the downstream voltage of relay EY260.

The classification error metric for each DA is
shown in the top-left plot of Fig. 7, where the

13

Detection Isolation Computation

DA M̄fd M̄fn M̄fp M̄da M̄fi M̄err M̄utl M̄cpu M̄mem

FACT 1 785 0 0.11 0.89 10 798 11 0.975 15 815 4 271
Fault Buster 155 0.5 0.01 0.68 − 56 0.685 1 951 2 569
HyDE 13 355 0.46 0 0.72 13 841 45 0.79 23 418 5 511
HyDE-S 121 0.04 0.38 0.6 683 66 0.791 573 5 366
Lydia 232 0.18 0.01 0.88 232 100.3 0.785 1 410 1 861
NGDE 194 0.13 0.03 0.89 14 922 44.5 0.833 21 937 73 031
ProADAPT 4 732 0.05 0.01 0.96 7 104 10 0.955 1 905 1 226
RacerX 77 0.2 0.03 0.85 − 56 0.685 146 3 619
RODON 4 204 0.04 0.01 0.97 12 364 4 0.983 12 050 28 870
RulesRule 949 0.09 0.33 0.62 949 63 0.818 167 3 784
Wizards of Oz 12 202 0.5 0 0.7 12 327 43 0.769 1 153 1 682

Table 8: ADAPT-Lite metrics results

Mfn

Mfp

Mfi

Mfd

Msru

Mdru

M
fp
err

M
fn
err

M
tp
err

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

FA
C
T

Fault
B
uster

H
yD

E

H
yD

E
-S

Lydia

N
G
D
E

P
roA

D
A
P
T

R
acerX

R
O
D
O
N

R
ulesR

ule

W
izards

of
O
z

0

20

40

60

80

100

120

FA
C
T

Fault
B
uster

H
yD

E

H
yD

E
-S

Lydia

N
G
D
E

P
roA

D
A
P
T

R
acerX

R
O
D
O
N

R
ulesR

ule

W
izards

of
O
z

FA
C
T

Fault
B
uster

H
yD

E

H
yD

E
-S

Lydia

N
G
D
E

P
roA

D
A
P
T

R
acerX

R
O
D
O
N

R
ulesR

ule

W
izards

of
O
z

FA
C
T

Fault
B
uster

H
yD

E

H
yD

E
-S

Lydia

N
G
D
E

P
roA

D
A
P
T

R
acerX

R
O
D
O
N

R
ulesR

ule

W
izards

of
O
z

Figure 7: ADAPT-Lite metrics

error contributions of scenarios labeled false neg-
ative, false positive, and true positive are noted.
Many DAs have difficulties distinguishing between
sensor-stuck and sensor-offset faults. The distinc-
tion in the fault behavior is that stuck has zero
noise while offset has the noise of the original sig-
nal; the rightmost plot in Fig. 8 shows the fan
speed sensor ST516 with sensor-offset and sensor-
stuck faults. In many scenarios, the sensor-stuck
faults are set to the minimum or maximum value
of the sensor or held at its last reading. The latter
case presents the most difficulties to DAs.

Mfd and Mfi are shown in the bottom-left plot
of Fig. 7. RacerX is a detection-only DA and does
not perform isolation (its detection time is very
low). Note that Mfd ≤Mfi, hence the bottom-left
plot of Fig. 7 shows the isolation time stacked on
the detection time (assume that part of the time
first goes into detection and then into isolation).

The top-right plot of Fig. 7 shows the system re-
pair utilty, Msru, and the diagnosis repair utility,
Mdru. The diagnosis repair utility is very close to 1
for all DAs, which reflects the small fault cardinal-
ity and diagnosis ambiguity groups for the system.

14

0 50 100 150 200

6

7

8

9

time (s)

c
u

rr
e

n
t

(A
)

IT240

0 100 200
22.8

22.9

23

23.1

time (s)

vo
lt

ag
e

(V
)

E261

0 100 200
0

200

400

600

800

time (s)

fa
n

 s
p

e
e

d
 (

R
P

M
)

ST516

o!set

stuck

Figure 8: Examples of sensor readings

Type Subtype Fault #

battery - degraded 1

circuit breaker - failed-open 18

inverter - failed-off 10

load

basic failed-off 1

fan
failed-off 5
over-speed 2
under-speed 3

light bulb failed-off 14

pump failed-off 3
blocked 2

relay
stuck-closed 3
stuck-open 26

sensor

position stuck 26

current, flow,
light,

offset 35

phase angle,
speed,

stuck 41

temp., volt-
age

Total: 190

Table 7: ADAPT faults

The number of components that a DA considers
faulty, N̄ , in any given scenario is typically close
to the number of faults injected in the scenario.
Since N̄ is much less than the number of compo-
nents, f , it is evident from equation (17) that Mdru
approaches 1. Furthermore, since the number of
healthy components, N , as determined by the DA
is larger than the number of faulty components,
N̄ , whereas n is typically not much different from
n̄, the system repair utility is smaller than the di-
agnosis repair utility.

Note that HyDE has been used by two differ-
ent modelers of ADAPT-Lite. HyDE was mod-
eled primarily with the larger and more complex
ADAPT in mind and had a policy of waiting for
transients to settle before requesting a diagnosis.
The same policy was applied to ADAPT-Lite as

well, even though transients in ADAPT-Lite cor-
responded strictly to fault events; this prevented
false positives in ADAPT but negatively impacted
the timing metric in ADAPT-Lite. On the other
hand, HyDE-S was modeled only for ADAPT-
Lite and did not include a lengthy time-out pe-
riod for transients to settle. HyDE-S had dramat-
ically smaller mean detection and isolation times
(see the bottom-left plot of Fig. 7) with roughly
the same Merr (see Table 8) as HyDE. This illus-
trates the impact that modeling and implemen-
tation decisions have on DA performance. While
this gives some insight into trade-offs present in
building models, in this work we did not define
metrics that directly address the ease or difficulty
of building models of sufficient fidelity for the di-
agnosis task at hand.

As is visible from Table 8, there exist significant
differences in Mcpu and Mmem. Part of these dif-
ferences can be attributed to the operating system
(Linux or WindowsTM). RODON was the only
Java DA that was run on WindowsTM, which ad-
versely affected its memory usage metric.

ADAPT The empirical DA benchmarking re-
sults for ADAPT are shown in Table 9. Fig-
ure 9 shows (1) Merr by DA (top-left), (2) Msru
and Mdru by DA (top-right), (3) Mfd and Mfi by
DA (bottom-left), and (4) Mfn and Mfp (bottom-
right). Five of eight DAs tested were best or sec-
ond best with respect to at least one of the metrics
for ADAPT.

The comments in the ADAPT-Lite discussion
about noise and sensor stuck apply here as well.
Additionally, false positives also result from nom-
inal commanded mode changes in which the relay
feedback did not change status as of the next data
sample after the command. Here is an extract
from one of the input scenario files that illustrates
this situation:
command @120950 EY275_CL = false;

sensors @121001 {..., ESH275 = true, ... };

sensors @121501 {..., ESH275 = false, ... };

A command is given at 120.95 seconds to open re-
lay EY275. The associated relay position sensor
does not indicate open as of the next sensor data
update 51 milliseconds later. This is nominal be-
havior for the system. A DA that does not account

15

Detection Isolation Computation

DA M̄fd M̄fn M̄fp M̄da M̄fi M̄err M̄utl M̄cpu M̄mem

Fault Buster 21 255 0.39 0.03 0.70 100 292 193 0.587 10 051 7 119
GoalArt 3 268 0.05 0.03 0.93 7 805 154 0.776 149 6 784
HyDE 15 612 0.31 0 0.79 20 114 174.3 0.668 28 807 19 135
Lydia 16 135 0.2 0.25 0.62 16 135 234.9 0.653 5 715 3 412
ProADAPT 1 743 0.02 0.09 0.90 23 544 57 0.915 4 260 778
RODON 5 543 0.03 0 0.98 35 792 75.6 0.853 85 331 31 459
StanfordDA 3 826 0.05 0.17 0.79 16 816 176.6 0.706 1 012 2 213
Wizards of Oz 25 695 0.09 0.16 0.77 50 980 209.2 0.76 17 111 3 390

Table 9: ADAPT metrics results

M
fp
err

M
fn
err

M
tp
err

Mfn

Mfp

Mfi

Mfd

Msru

Mdru

0

0.1

0.2

0.3

0.4

0.5

Fault
B
uster

G
oalA

rt

H
yD

E

Lydia

P
roA

D
A
P
T

R
O
D
O
N

StanfordD
A

W
izards

of
O
z

0

20 000

40 000

60 000

80 000

100 000

120 000

Fault
B
uster

G
oalA

rt

H
yD

E

Lydia

P
roA

D
A
P
T

R
O
D
O
N

StanfordD
A

W
izards

of
O
z

0

50

100

150

200

250

Fault
B
uster

G
oalA

rt

H
yD

E

Lydia

P
roA

D
A
P
T

R
O
D
O
N

StanfordD
A

W
izards

of
O
z

0

0.2

0.4

0.6

0.8

1

Fault
B
uster

G
oalA

rt

H
yD

E

Lydia

P
roA

D
A
P
T

R
O
D
O
N

StanfordD
A

W
izards

of
O
z

Figure 9: ADAPT metrics

for this delay will indicate a false positive in this
case.

The detection and isolation times are generally
within the same order of magnitude for the differ-
ent DAs (see the bottom-left plot of Fig. 9). Some
DAs have isolation times that are similar to its
detection times while others show isolation times
that are much greater than the detection times.
This could reflect differences in reasoning strate-
gies or differences in policies for when to declare
an isolation based on accumulated evidence.

The CPU and memory usage are shown in Ta-
ble 9. The same comment for RODON mentioned
previously in regards to memory usage applies
here. The convex optimization approach applied
in the StanfordDA and the compiled arithmetic

circuit in ProADAPT lead to very low CPU us-
ages.

4.2.5 Fault Type and Cardinality
Analysis

The plots on the left-hand side of Fig. 10 show
detection accuracy for all DAs by fault type for
ADAPT-Lite and ADAPT. In general, Mda is not
very sensitive to the component type, except in
the case of load and sensor faults where it is lower.
The data on the battery detection accuracy is not
representative due to the limited number of fault
scenarios containing battery faults (see Table 6
and Table 7).

The plots on the right-hand side of Fig. 10 show
classification errors for all DAs by fault type for

16

F
a
u
lt

B
u
s
t
e
r

G
o
a
lA

r
t

H
y
D

E

L
y
d
ia

P
r
o
A

D
A

P
T

R
O

D
O

N

S
t
a
n
fo

r
d
D

A

W
iz

a
r
d
s

o
f
O

z

F
A

C
T

F
a
u
lt

B
u
s
t
e
r

H
y
D

E

H
y
D

E
-S

L
y
d
ia

N
G

D
E

P
r
o
A

D
A

P
T

R
a
c
e
r
X

R
O

D
O

N

R
u
le

s
R

u
le

W
iz

a
r
d
s

o
f
O

z

0

0
.2

0
.4

0
.6

0
.81

n
o

fa
u
lt

b
a
tt

e
ry

c
ir

c
.

b
re

a
k
e
r
in

v
e
rt

e
r

lo
a
d

re
la

y
se

n
so

r

A
D

A
P

T
-L

it
e

0

0
.2

0
.4

0
.6

0
.81

n
o

fa
u
lt

b
a
tt

e
ry

c
ir

c
.

b
re

a
k
e
r
in

v
e
rt

e
r

lo
a
d

re
la

y
se

n
so

r

A
D

A
P

T

0

0
.51

1
.52

n
o

fa
u
lt

b
a
tt

e
ry

c
ir

c
.

b
re

a
k
e
r
in

v
e
rt

e
r

lo
a
d

re
la

y
se

n
so

r

A
D

A
P

T

0

0
.51

1
.52

2
.53

3
.54

4
.5

n
o

fa
u
lt

b
a
tt

e
ry

c
ir

c
.

b
re

a
k
e
r
in

v
e
rt

e
r

lo
a
d

re
la

y
se

n
so

r

A
D

A
P

T
-L

it
e

MdaMda

MerrperscenarioMerrperscenario

F
ig

u
re

1
0
:

M̄
d
a

a
n
d

M̄
e
rr

p
er

fa
u
lt

ty
p
e

fo
r

a
ll

D
A

s

17

ADAPT-Lite and ADAPT. While the overall per-
formance (averaged for all DAs) indicates that
most fault categories result in roughly the same
number of errors per scenario, it can be seen that
a given DA may do better on some faults com-
pared to others; furthermore, several DAs have the
fewest classification errors for the different fault
types. We should also note that in this bench-
marking study, no partial credit was given for
correctly naming the failed component but incor-
rectly isolating the failure mode. We realize how-
ever, that isolating to a failed component or line-
replaceable-unit (LRU) in maintenance operations
is sometimes all that is required. We plan to re-
visit this metric in future work.

Figure 11 shows the breakdown of classification
errors by the number of faults in the scenario. In
general, the number of errors increased approxi-
mately linearly with the number of faults in the
scenario.The errors in the multiple fault scenar-
ios were evenly divided among the faults; for ex-
ample, if there were four classification errors in a
scenario where two faults were injected, each fault
was assigned two errors. We also did a more thor-
ough assessment in which each diagnosis candidate
was examined and classification erorrs were as-
signed to fault categories based on an understand-
ing of which sensors are affected by the faults. The
results are similar to evenly dividing the errors
among the faults and are not shown here.

nominal

single-faults

double-faults

triple-faults

0

0.5

1

1.5

2

2.5

3

3.5

4

Fault
B
uster

G
oalA

rt

H
yD

E

Lydia

P
roA

D
A
P
T

R
O
D
O
N

StanfordD
A

W
izards

of
O
z

M
e
r
r

p
e
r

sc
e
n
a
ri

o

Figure 11: Merr per fault cardinality for all DAs
(ADAPT)

4.2.6 Metric Correlations
The correlation matrix shown in Table 10 con-
tains the Pearson’s linear correlation coefficients
between each metric for the industrial systems
ADAPT and ADAPT-Lite.

Ideally, metrics should measure different aspects
of DAs, i.e., the correlation matrix should contain
small values only. Alternatively, users may use the
correlation matrix from Table 10 to select metrics
and adjust metric weights in computing the pa-
rameters of their DAs. Unexpected high correla-
tions (or anti-correlations) between metrics indi-

cate (1) bias due to the system or the sensor data,
or (2) hidden metric dependencies.

All correlation coefficients in Table 10, except
those shown in bold red, are significant–the p-
values according to the Student’s t distribution are
smaller than 0.03.

Figure 12 is a color map of the correlation
matrix from Table 10. Correlations or anti-
correlations close to 1 are colored in red, while
values closer to 0 are shown in blue colors.

M ia

Merr

M
sru

M
dru

Mutl

M fd

Mfi

M fn

M fp

Mda

Mcpu

Mmem

M
ia

M
er
r

M
sr
u

M
dr
u

M
ut
l

M
fd

M
fi

M
fn

M
fp

M
da

M
cp
u

M
m
em

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 12: ADAPT & ADAPT-Lite metrics cor-
relations

The anti-correlation between Mia and Merr is
trivial (see (22)) and the only reason for including
it is to show the correctness of our implementation.

The utility metric shows high correlation with
the isolation accuracy/classification errors (ρ =
0.75). This is expected as both metrics measure
similar properties of the DAs’ results. Less triv-
ial is the high correlation between M−

utl and M+
utl

(ρ = 0.84). This indicates that DAs do not show
preferences towards diagnosing false negatives or
false positives.

The time for fault isolation Mia correlates highly
with the three utility metrics, for which we have
no explanation. The Mfn metric correlates high
with Mda which comes from the metric design and
indicates that, in general, DAs are tuned to avoid
false positives at the price of more false negatives.

4.3 Case Study II: Synthetic Systems

We continue our discussion with an overview of
the synthetic systems. The major differences be-
tween this case study and the previous are the
sizes of the systems and the cardinalities of the
injected faults. Furthermore, all system variables
in this case study are of Boolean type. This case
study aims to compare the robustness, CPU per-
formance, and memory consumption of various
DAs under stress conditions (large systems, faults
of multiple-cardinality, etc.).

18

Mia Merr Msru Mdru Mutl Mfd Mfi Mfn Mfp Mda Mcpu Mmem

Mia 1 −1 0.79 0.7 0.8 −0.18 −0.25 -0.04 −0.18 0.15 0.04 0.03
Merr −1 1 −0.79 −0.7 −0.8 0.18 0.25 0.04 0.18 −0.15 -0.04 -0.03
Msru 0.79 −0.79 1 0.21 1 −0.37 −0.5 −0.31 −0.11 0.33 0.1 -0.01
Mdru 0.7 −0.7 0.21 1 0.24 0.07 0.14 0.23 −0.16 −0.09 -0.04 0.06
Mutl 0.8 −0.8 1 0.24 1 −0.36 −0.49 −0.3 −0.12 0.33 0.1 0
Mfd −0.18 0.18 −0.37 0.07 −0.36 1 0.7 0.75 0.54 −0.98 −0.17 −0.12
Mfi −0.25 0.25 −0.5 0.14 −0.49 0.7 1 0.65 0.19 −0.67 -0.07 0.02
Mfn -0.04 0.04 −0.31 0.23 −0.3 0.75 0.65 1 −0.12 −0.76 −0.14 -0.06
Mfp −0.18 0.18 −0.11 −0.16 −0.12 0.54 0.19 −0.12 1 −0.55 −0.13 −0.1
Mda 0.15 −0.15 0.33 −0.09 0.33 −0.98 −0.67 −0.76 −0.55 1 0.2 0.12
Mcpu 0.04 -0.04 0.1 −0.04 0.1 −0.17 -0.07 −0.14 −0.13 0.2 1 0.54
Mmem 0.03 -0.03 -0.01 0.06 0 −0.12 0.02 -0.06 −0.1 0.12 0.54 1

Table 10: ADAPT metrics correlation matrix (correlations with p-values smaller than 0.03 are shown in
bold red)

4.3.1 Description of Systems
The original 74XXX/ISCAS85 netlists can be me-
chanically translated into propositional Wffs. We
have translated the propositional Wffs into logi-
cally equivalent Conjunctive Normal Form (CNF)
formulae (Forbus & de Kleer, 1993). These CNF
formulae are described in Table 11.

Name |IN| |OUT| |COMPS| |V | |C|

74182 9 5 19 47 75
74L85 11 3 33 77 118
74283 9 5 36 81 122
74181 14 8 65 144 228

c432 36 7 160 356 1 028
c499 41 32 202 445 1 428
c880 60 26 383 826 2 224
c1355 41 32 546 1 133 3 220
c1908 33 25 880 1 793 4 756
c2670 233 140 1 193 2 695 6 538
c3540 50 22 1 669 3 388 9 216
c5315 178 123 2 307 4 792 13 386
c6288 32 32 2 416 4 864 14 432
c7552 207 108 3 512 7 232 19 312

Table 11: 74XXX/ISCAS85 circuits

For each 74XXX/ISCAS85 CNF formula, Ta-
ble 11 gives the number of inputs |IN|, the num-
ber of outputs |OUT|, the size of the compo-
nents sets |COMPS|, the number of variables |V |,
and the number of clauses |C|. The size of the
74XXX/ISCAS85 circuits can be reduced by using
cones for computing single-component ambiguity
groups (Siddiqi & Huang, 2007) or using fault col-
lapsing.

4.3.2 Synthetic Model Scenarios
We have noticed that the performance of many
DAs depends on the Minimum Cardinality (MC)
of the diagnoses. Hence, we have performed our
experimentation with a number of different obser-
vations leading to diagnoses of different MCs. Al-
gorithm 1 generates observations leading to diag-
noses of different MC, varying from 1 to nearly

the maximum for the respective circuits (for the
74XXX models it is the maximum). The experi-
ments omit nominal scenarios as they are trivial
with synthetic systems.

The synthetic scenarios disregard the temporal
aspects of diagnosis. They are created in the fol-
lowing way. In the beginning of a scenario, a DA
is sent a nominal observation. After 5 s a fault ω⋆

is injected. An observation α consistent with ω⋆ is
sent 6 s after the scenario start. We next discuss
the generation of the “faulty” observations.

Algorithm 1 Algorithm for generation of obser-
vation vectors
1: function MakeAlphas(DS, N, K) returns

a set of observations
inputs: DS = 〈SD, COMPS, OBS〉

OBS = IN ∪OUT, IN ∩OUT = ∅
N , integer, number of tries
K, integer, maximal number of

diagnoses per cardinality
local variables: α, β, αn, ω, terms

c, integer, best card. so far
Ω, set of terms, diagnoses
A, set of terms, result

2: for k ← 1, 2, . . . , K do
3: α← RandomInputs(IN)
4: β ← NominalOutputs(DS, α)
5: c← 0
6: for all v ∈ OUT do
7: αn ← α ∧ Flip(β, v)
8: Ω← Safari(SD, αn, |COMPS|, N)
9: ω ←MinCardDiag(Ω)

10: if |ω| > c then
11: c← |ω|
12: A← A ∪ αn

13: end if
14: end for
15: end for
16: return A
17: end function

Algorithm 1 is an approximate algorithm that
returns a set of observations A. Each observation

19

α ∈ A leads to a diagnosis of different MC and
is used in a different scenario. We have executed
Alg. 1 multiple times, filtering out identical obser-
vations, until we have collected observations for a
sufficient number of scenarios.

Algorithm 1 uses a number of auxiliary func-
tions. RandomInputs (line 3) assigns uniformly
distributed random values to each input in IN
(note that for the generation of observation vec-
tors we partition the observable variables OBS
into inputs IN and outputs OUT and use the
input/output information which comes with the
original 74XXX/ISCAS85 circuits for simulation).
Given the “all healthy” health assignment and
the diagnostic system, NominalOutputs (line 4)
performs simulation by propagating the input as-
signment α. The result is an assignment β which
contains values for each output variable in OUT.

The loop in lines 7 – 14 increases the cardinal-
ity by greedily flipping the values of the output
variables. For each new candidate observation
αn, Alg. 1 uses the diagnostic algorithm Safari

to compute a minimal diagnosis of cardinality c
(Feldman, Provan, & van Gemund, 2008a). As
Safari returns more than one diagnosis (up to
N), we use MinCardDiag to choose the one of
smallest cardinality. If the cardinality c of this
diagnosis increases in comparison to the previous
iteration, the observation is added to the list.

By running Alg. 1 we get up to K observations
leading to faults of cardinality 1, 2, . . . , m, where
m is the cardinality of the MFMC diagnosis (Feld-
man, Provan, & van Gemund, 2008b) for the re-
spective circuit. Alg. 1 clearly shows a bootstrap-
ping problem. In order to create potentially “dif-
ficult” observations for a DA we require a DA to
solve those “difficult” observations. In our case we
have used the anytime Safari. As Safari is a
stochastic algorithm, sometimes it returns a mini-
mal diagnosis when we need a minimal-cardinality
one. This leads to scenarios resulting in lower car-
dinalities than intended but this seemingly causes
no problems except minor difficulties in the anal-
ysis of the DAs’ performance.

4.3.3 Experimental Results
We start this section by computing the relevant
metrics for this case study: M̄utl, M̄cpu, and
M̄mem. The results are shown in Table 12.

It can be seen that Lydia has achieved signif-
icantly better M̄cpu and M̄mem than NGDE and
RODON. Mutl of Lydia is slightly worse due to
smaller number of diagnostic candidates computed
by this DA. Lydia and RODON showed similar
results in the utility metrics.

We have computed M̄sat and the results are
shown in Table 14. The SAT and UNSAT columns
show the number of consistent and inconsistent
candidates, respectively. NGDE has generated ap-
proximately two orders of magnitude more satis-
fiable candidates than Lydia and RODON. The
policy of Lydia has been to compute a small num-
ber of candidates, minimizing M̄mem and M̄cpu. In
order to improve M̄utl, Lydia has mapped mul-

tiple-cardinality candidates into single-component
failure probabilities. Hence, only single-fault sce-
narios contribute to the M̄sat score for Lydia.

5 DISCUSSION

The primary goal of the empirical evaluation pre-
sented in this paper was to demonstrate an end-to-
end implementation of DXF and create a founda-
tion for future usage of the framework. As a result
we made several simplifying assumptions. We also
ran into several issues during the course of this im-
plementation that could not be addressed. In this
section, we present those assumptions and issues,
which we hope can be addressed in future imple-
mentations.

5.1 DXF Data Structures

The system catalog has been intentionally defined
as a general XML format to avoid committing
to specific modeling or knowledge representations
(e.g., equations). It is expected that the sample
training data and pointers to additional documen-
tation would be sufficient for DA developers to
learn the behavior of the system. We will continue
to look for ways to extend the system catalog rep-
resentation to provide as much general information
about the system as possible. The diagnosis result
format is defined to be a set of candidates with a
weight associated with each candidate. Each can-
didate reports faulty modes of 0 (all nominal) or
more components. Obviously this is a simplistic
representation since it does not allow reporting of
intermittent faults, parametric faults, among oth-
ers. Also, in some cases it may be desirable to re-
port a belief state (a probability distribution over
component states) as opposed to a set of candi-
dates.

5.2 Run-Time Architecture

For the ADAPT system, the fault signatures were
limited to abrupt parametric and discrete types.
We plan to introduce other fault types (incipi-
ent, intermittent, and noise) in the future. The
runtime architecture was defined such that no as-
sumptions were made regarding the actual opera-
tional environments in which the diagnostic algo-
rithms may be run. We understand that a true
test would simulate operating conditions of the
real system, i.e. the system operates nominally for
long periods of time and failures occur periodically
following the prior probability of failure distribu-
tion. In this work, faults were inserted assuming
equal probabilities. In the future, we will provide
the failure rates of components and use these to
evaluate the performance of DAs. It was also as-
sumed that all sensor data was available to the
DAs at all time steps. In the future, we would like
to relax this assumption and provide only a sub-
set of the sensor data. Additional ideas for future
research include giving DAs reduced sensor sets,
introducing multi-rate sensor data, injecting tran-
sient faults, allowing for autonomous transitions,
adding variable loads, and extending the scope and
complexity of the physical system.

20

Lydia NGDE RODON

Name M̄utl M̄cpu M̄mem M̄utl M̄cpu M̄mem M̄utl M̄cpu M̄mem

74182 0.365 62 17 0.466 230 10 716 0.262 1 293 18 205
74L85 0.455 53 18 0.575 341 11 838 0.372 5 233 22 533
74283 0.419 57 17 0.479 206 10 654 0.353 4 863 20 714
74181 0.374 73 21 0.486 213 10 879 0.405 14 222 26 962

c432 0.529 91 24 0.664 319 12 058 0.492 19 129 36 772
c499 0.29 80 33 0.414 1 719 17 063 0.258 20 649 36 436
c880 0.262 1 842 37 0.296 1 516 21 437 0.275 18 404 34 843
c1355 0.335 387 34 0.37 4 734 23 967 0.373 22 133 33 653
c1908 0.208 745 29 0.232 8 994 33 995 0.19 24 361 36 102
c2670 0.603 327 119 0.921 571 14 828 0.886 17 178 34 069
c3540 0.355 833 33 0.374 9 223 31 954 0.307 49 397 48 162
c5315 0.243 811 94 0.531 6 477 22 406 0.238 87 720 50 526
c6288 0.316 2 162 32 0.32 11 784 65 086 0.316 89 130 51 268
c7552 0.3 2 001 97 0.436 8 638 39 592 0.364 172 558 65 846

Averaged 0.361 680 43 0.469 3 926 23 320 0.364 39 019 36 864

Table 12: Synthetic systems metrics results

Lydia NGDE RODON

M̄sru M̄dru M̄err M̄sru M̄dru M̄err M̄sru M̄dru M̄err

74182 0.381 0.984 69 0.574 0.892 78 0.262 1 80

74L85 0.458 0.996 30 0.617 0.958 39 0.46 0.913 78
74283 0.437 0.982 46 0.523 0.957 51 0.423 0.93 82
74181 0.378 0.995 48 0.517 0.969 55 0.456 0.949 87

c432 0.53 0.999 29 0.671 0.993 35 0.505 0.987 64
c499 0.293 0.997 71 0.428 0.986 78 0.268 0.99 107
c880 0.263 0.999 89 0.306 0.99 127 0.281 0.994 113
c1355 0.336 0.999 73 0.375 0.995 94 0.375 0.999 71
c1908 0.208 0.999 69 0.239 0.993 113 0.191 1 70
c2670 0.603 1 24 0.921 1 6 0.886 1 10
c3540 0.355 1 58 0.376 0.999 88 0.308 0.999 82
c5315 0.243 1 73 0.532 0.999 58 0.239 0.999 114
c6288 0.317 1 16 0.32 1 15 0.317 0.999 18
c7552 0.3 1 60 0.437 0.999 69 0.364 0.999 70

Averaged 0.364 0.996 54.02 0.488 0.981 64.75 0.381 0.983 74.71

Table 13: Synthetic systems secondary metrics results

For the synthetic systems, all the systems have
been known in advance. This means researchers
could optimize for these circuits. In addition, only
one observation time was sampled. In the future,
we will provide multiple observations. This will
evaluate a DA’s ability to merge information from
multiple times. An important component of trou-
bleshooting is introducing probe points. In the fu-
ture, we can evaluate the number of probes needed
to isolate the fault.

5.3 Diagnostic Metrics

The set of metrics we have chosen as primary is
based on literature survey and expert opinion on
what measures are important to assess the effec-
tiveness of DAs. However, we realize that this
set is by no means exhaustive. Different sets of

metrics may be applicable depending on what the
diagnosis results are supporting (abort decisions,
ground support, fault-adaptive control, etc.). In
addition there might be a set of weights associ-
ated with the metrics depending on their impor-
tance (for abort decisions the fault detection time
is of utmost importance). We expect to add more
metrics to the list in the future (with support tools
to compute those metrics). In addition since we
were dealing with abrupt, persistent, and discrete
faults, metrics associated with incipient, intermit-
tent, and/or continuous faults were not consid-
ered.

Finally, the metrics listed in this paper do not
capture the amount of effort necessary to build
models of sufficient fidelity for the diagnosis task
at hand. Furthermore, we have not investigated

21

Lydia NGDE RODON

Name SAT UNSAT M̄sat SAT UNSAT M̄sat SAT UNSAT M̄sat

74182 19 45 5.67 1240 0 28 0 0 0
74L85 1 27 1 178 0 20 13 7 13
74283 34 57 5.32 561 0 20 15 5 15
74181 12 43 2.4 691 0 20 4 16 4

c432 10 29 4.7 1 109 0 20 5 15 5
c499 2 118 1 707 0 20 2 12 2
c880 27 86 1.74 12 663 0 20 15 0 15
c1355 36 162 4.1 3 246 0 20 8 3 8
c1908 13 35 1 3 593 4 7 0 2 0
c2670 7 30 7 25 0 19 17 2 17
c3540 38 77 1.86 231 10 10 1 17 1
c5315 0 55 0 1 665 0 20 0 13 0
c6288 8 30 0.27 126 0 2 2 2 2
c7552 7 53 0.64 1 493 3 17 1 17 1

Averaged 15.29 60.50 2.62 1 966.29 1.21 17.36 5.93 7.93 5.93

Table 14: Synthetic systems satisfiability results

the ease or difficulty of updating models with new
or changed system information. The art of build-
ing models is an important practical consideration
which is not addressed in the current work.

In future work, we would like to determine a
set of application-specific use cases (maintenance,
autonomous operation, abort decision etc.) that
the DA is supporting and select metrics that would
be relevant to that use case.

5.4 Empirical Evaluation
Some practical issues arose in the execution of
experiments. Much effort was put into ensuring
stable, uniform conditions on the host machines;
however, during the implementation, it was neces-
sary to take measures that may have caused slight
variability. One example was the manual exam-
ination of ongoing experiment results for quality
assurance. Future releases of the DXF can address
this by being more robust to unexpected DA be-
havior, and sending notifications in the event of
such. Additionally, for Java DAs, significant dif-
ferences were evident in the peak memory usage
metric when run on Linux versus Windows. The
problem was mostly bypassed by running all but
one Java DA on Linux.

6 CONCLUSION

We presented a framework for evaluating and com-
paring DAs under identical conditions. The frame-
work is general enough to be applied to any sys-
tem and any kind of DA. The run-time architec-
ture was designed to be as platform independent as
possible. We defined a set of metrics that might be
of interest when designing a diagnostic algorithm
and the framework includes tools to compute the
metrics by comparing actual scenarios and diag-
nostic results.

Using the framework, we have experimented
with 13 diagnostic algorithms on 16 systems of var-
ious size and synthetic/real-world origin. We have,

both manually and programatically, created 1 651
observation scenarios of various complexity. We
have designed 10 metrics for measuring diagnostic
performance. This has resulted in the execution
of 6 484 scenarios with a total duration of more
than 169.7 hours and the computation of 84 292
metrics.

We presented the results from our effort to eval-
uate the performance of a set of diagnostic al-
gorithms on the ADAPT electrical power system
testbed, and a set of synthetic circuits. We learned
valuable lessons in trying to complete this effort.
One major take-away is that there is still a lot of
work and discussion needed to determine a com-
mon comparison and evaluation framework for the
diagnosis community. The other key observation
is that no DA was able to be best in a majority of
the metrics. This clearly indicates that the selec-
tion of DAs would necessarily involve a trade-off
analysis between various performance metrics.

The framework presented is by no means a fin-
ished product and we expect it to evolve over the
years. In the paper, we have identified some of the
limitations and expected scope for future expan-
sion. Our sincere hope is that the framework is
adopted by growing number of people and applied
to a wide variety of physical systems including di-
agnosis algorithms from several different research
communities. The long-term goal is to create a
database of performance evaluation results which
will allow system designers to choose the appro-
priate DA for their system given the constraints
and metrics in their application.

ACKNOWLEDGEMENTS

We extend our gratitude to Gautam Biswas (Van-
derbilt University), Kai Goebel (University Space
Research Association), Ole Mengshoel (Carnegie
Mellon University), Gregory Provan (University
College Cork), Peter Struss (Technical University
Munich), Serdar Uckun (PARC), and many others

22

for valuable discussions in establishing the evalua-
tion framework. In addition, we extend our grati-
tude to David Hall (Stinger Ghaffarian Technolo-
gies), David Jensen (Oregon State University),
David Nishikawa (NASA), Brian Ricks (Univer-
sity of Texas at Dallas), Adam Sweet (NASA),
Michel Wilson (Delft University of Technology),
Stephanie Wright (Vanderbilt University), and
many others for supporting the work reported
here.

This research was supported in part by the
National Aeronautics and Space Administration
(NASA) Aeronautics Research Mission Direc-
torate (ARMD) Aviation Safety Program (AvSP)
Integrated Vehicle Management (IVHM) Project.
Additionally, this material is based upon the work
supported by NASA under award NNA08CG83C.

This research was supported by PROGRESS,
the embedded systems research program of the
Dutch organisation for Scientific Research NWO,
the Dutch Ministry of Economic Affairs and
the Technology Foundation STW under award
DES.07015.

NOMENCLATURE
IN inputs
OUT outputs
COMPS components
V variables
C clauses
td first detection
ti last isolation
Cs startup CPU cycles
C CPU cycles per step
M memory in use
ω⋆ injected fault
t⋆i injection of fault i
Ω candidate diagnoses
Ω⊤ satisfiable candidate diagnoses
W candidate weights
f number of all components
n number of false negatives
N number of healthy components
n̄ number of false positives
N̄ number of faulty components
mia candidate isolation accuracy
msru candidate system repair utility
mdru candidate diagnosis repair utility
mutl candidate utility
Mfd scenario fault detection time
Mfn scenario false negative
Mfp scenario false positive
Mda scenario detection accuracy
Mfi scenario fault isolation time
Mia scenario isolation accuracy
Merr scenario classification errors
Mutl scenario utility
Msru scenario system repair utility
Mdru scenario diagnosis repair utility
Msat scenario consistency

Mcpu scenario CPU load
Mmem scenario memory load
M̄fd system fault detection time
M̄fn system false negative
M̄fp system false positive
M̄da system detection accuracy
M̄fi system fault isolation time
M̄err system classification errors
M̄utl system utility
M̄sru system system repair utility
M̄dru system diagnosis repair utility
M̄sat system consistency
M̄cpu system CPU load
M̄mem system memory load

REFERENCES

Bartyś, M., Patton, R., Syfert, M., de las Heras,
S., & Quevedo, J. (2006). Introduction to
the DAMADICS actuator FDI benchmark
study. Control Engineering Practice, 14,
577–596.

Basseville, M., & Nikiforov, I. V. (1993). Detection
of Abrupt Changes: Theory and Application.
Prentice-Hall.

Brglez, F., & Fujiwara, H. (1985). A neutral netlist
of 10 combinational benchmark circuits and
a target translator in Fortran. In Proc. IS-
CAS’85, pp. 695–698.

Committee E-32, S. A. P. S. H. M. (2008). Health
and usage monitoring metrics, monitoring
the monitor. Tech. rep. ARP5783.

Davis, M., Logemann, G., & Loveland, D. (1962).
A machine program for theorem-proving.
Communications of the ACM, 5 (7), 394–
397.

de Freitas, N. (2002). Rao-blackwellised particle
filtering for fault diagnosis. In Proc. AERO-
CONF’02, Vol. 4, pp. 1767–1772.

de Kleer, J. (2009). Minimum cardinality candi-
date generation. In Proc. DX’09, pp. 397–
402.

de Kleer, J., Mackworth, A., & Reiter, R. (1992).
Characterizing diagnoses and systems. Arti-
ficial Intelligence, 56 (2-3), 197–222.

de Kleer, J., & Williams, B. (1987). Diagnosing
multiple faults. Artificial Intelligence, 32 (1),
97–130.

DePold, H. R., Rajamani, R., Morrison, W. H., &
Pattipati, K. R. (2006). A unified metric for
fault detection and isolation in engines. In
Proc. TURBO’06.

DePold, H. R., Siegel, J., & Hull, J. (2004).
Metrics for evaluating the accuracy of di-
agnostic fault detection systems. In Proc.
TURBO’04.

Feldman, A., Provan, G., & van Gemund, A.
(2007). Interchange formats and automated
benchmark model generators for model-
based diagnostic inference. In Proc. DX’07,
pp. 91–98.

23

Feldman, A., Provan, G., & van Gemund, A.
(2008a). Computing minimal diagnoses by
greedy stochastic search. In Proc. AAAI’08,
pp. 911–918.

Feldman, A., Provan, G., & van Gemund, A.
(2008b). Computing observation vectors
for max-fault min-cardinality diagnoses. In
Proc. AAAI’08, pp. 911–918.

Feldman, A., Provan, G., & van Gemund, A.
(2009). The Lydia approach to combi-
national model-based diagnosis. In Proc.
DX’09, pp. 403–408.

Forbus, K., & de Kleer, J. (1993). Building Prob-
lem Solvers. MIT Press.

Gertler, J. J. (1998). Fault Detection and Diagno-
sis in Engineering Systems. Marcel Dekker.

Grastien, A., & Kan-John, P. (2009). Wizards of
Oz – description of the 2009 DXC entry. In
Proc. DX’09, pp. 409–413.

Heller, U., & Struss, P. (2001). G+DE - the gener-
alized diagnosis engine. In Proc. DX’01, pp.
79–86.

Hoyle, C., Mehr, A. F., Tumer, I. Y., & Chen,
W. (2007). Cost-benefit quantification of
ISHM in aerospace systems. In Proc.
IDETC/CIE’07.

Iverson, D. L. (2004). Inductive system health
monitoring. In Proc. ICAI’04.

Izadi-Zamanabadi, R., & Blanke, M. (1999). A
ship propulsion system as a benchmark for
fault-tolerant control. Control Engineering
Practice, 7 (2), 227–240.

Karin, L., Lunde, R., & Münker, B. (2006). Model-
based failure analysis with RODON. In Proc.
ECAI’06.

Kavčič, M., & Juričić, �. (1997). A prototyping
tool for fault tree based process diagnosis. In
Proc. DX’97, pp. 129–133.

Kurien, J., & Moreno, M. D. R. (2008). Costs and
benefits of model-based diagnosis. In Proc.
AEROCONF’08.

Kurtoglu, T., Mengshoel, O., & Poll, S. (2008). A
framework for systematic benchmarking of
monitoring and diagnostic systems. In Proc.
PHM’08.

Kurtoglu, T., Narasimhan, S., Poll, S., Garcia, D.,
Kuhn, L., de Kleer, J., van Gemund, A., &
Feldman, A. (2009). First international diag-
nosis competition - DXC’09. In Proc. DX’09,
pp. 383–396.

Larsson, J. E. (1996). Diagnosis based on explicit
means-end models. Artificial Intelligence,
80 (1).

Lerner, U., Parr, R., Koleer, D., & Biswas, G.
(2000). Bayesian fault detection and diagno-
sis in dynamic systems. In Proc. AAAI’00,
pp. 531–537.

Mengshoel, O. (2007). Designing resource-
bounded reasoners using Bayesian networks:
System health monitoring and diagnosis. In
Proc. DX’07, pp. 330–337.

Metz, C. E. (1978). Basic principles of ROC anal-
ysis. Nuclear Medicine, 8 (4), 283–298.

Narasimhan, S., & Brownston, L. (2007). HyDE
- a general framework for stochastic and hy-
brid modelbased diagnosis. In Proc. DX’07,
pp. 162–169.

Orsagh, R. F., Roemer, M. J., Savage, C. J., &
Lebold, M. (2002). Development of perfor-
mance and effectiveness metrics for gas tur-
bine diagnostic technologies. In Proc. AE-
ROCONF’02, Vol. 6, pp. 2825–2834.

Poll, S., Patterson-Hine, A., Camisa, J., Gar-
cia, D., Hall, D., Lee, C., Mengshoel, O.,
Neukom, C., Nishikawa, D., Ossenfort, J.,
Sweet, A., Yentus, S., Roychoudhury, I.,
Daigle, M., Biswas, G., & Koutsoukos, X.
(2007). Advanced diagnostics and prognos-
tics testbed. In Proc. DX’07, pp. 178–185.

Reiter, R. (1987). A theory of diagnosis from first
principles. Artificial Intelligence, 32 (1), 57–
95.

Roemer, M., Dzakowic, J., Orsagh, R. F., Bying-
ton, C. S., & Vachtsevanos, G. (2005). Val-
idation and verification of prognostic health
management technologies. In Proc. AERO-
CONF’05, pp. 3941–3947.

Roychoudhury, I., Biswas, G., & Koutsoukos, X.
(2009). Designing distributed diagnosers for
complex continuous systems. IEEE Trans.
on Automation Science and Engineering,
6 (2), 277–290.

Russell, S., & Norvig, P. (2003). Artificial Intelli-
gence: A Modern Approach. Pearson Educa-
tion.

Schuster, E. F., & Sype, W. R. (1987). On the
negative hypergeometric distribution. Inter-
national Journal of Mathematical Education
in Science and Technology, 18 (3), 453–459.

Siddiqi, S., & Huang, J. (2007). Hierarchical diag-
nosis of multiple faults. In Proc. IJCAI’07,
pp. 581–586.

Simon, L., Bird, J., Davison, C., Volponi, A., &
Iverson, R. E. (2008). Benchmarking gas
path diagnostic methods: A public approach.
In Proc. ASME Turbo Expo 2008.

Sorsa, T., & Koivo, H. (1998). Application of ar-
tificial neural networks in process fault diag-
nosis. Automatica, 29 (4), 843–849.

Williams, Z. (2006). Benefits of IVHM: An ana-
lytical approach. In Proc. AEROCONF’06,
pp. 1–9.

Zymnis, A., Boyd, S., & Gorinevsky, D. (2009).
Relaxed maximum a posteriori fault identi-
fication. Signal Processing, 89 (6), 989–999.

24

A DERIVATIONS OF METRICS

This appendix provides detailed derivation of the
formulae for the technical accuracy metrics. In
this appendix we use notation of Sec. 3.3 (in par-
ticular, recall Fig. 4 and Table 3).

A.1 Classification Errors and Isolation
Accuracy

Recall the definition of Merr and Mia:

Merr =
∑

ω∈Ω

W (ω)(|ω ⊖ ω⋆|) (20)

Mia =
∑

ω∈Ω

W (ω)(f − |ω ⊖ ω⋆|) (21)

One can see that Mia and Merr are duals, i.e.:

Mia

f
+

Merr

f
= 1 (22)

Consider the isolation accuracy (mia) of a single
diagnostic candidate ω ∈ Ω:

mia = f − |ω ⊖ ω⋆| (23)

Eq. 23 defines a plane in the (n, n̄, mia)-space (see
Fig 13).

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.5

1

n
|COMPS|

n̄
|COMPS|

m
ia

 /
|C

O
M

P
S

|

Figure 13: mia as a function of n and n̄

mia “penalizes” a DA for each misclassified com-
ponent. As is visible from Fig. 13, the penalty is
applied linearly.

The isolation accuracy metric Mia originates in
the automotive industry (Committee E-32, 2008).
The Aerospace Recommended Practice (ARP)
computes the closely related probability of correct
classification in the following way. For each com-
ponent we compute the square confusion matrix.
The probability of correct classification is the sum
of the main diagonal divided by the total number
of classifications (see the referenced ARP (Com-
mittee E-32, 2008) for details and examples).

It can be shown that the probability of cor-
rect classification, as defined in the above ARP,
is equivalent to Mia, if both fault and nominal
component modes are used for the computation
of the confusion matrices. The probability of cor-
rect classification is conditioned on the fault prob-
ability while the probability measured by Mia is

not. The latter is purely a metric design consid-
eration. The fact that we use nominal modes for
computing Mia leads to higher correlation of Mia
with the detection accuracy metrics defined later
in this section.

If more than one predicted mode vector is re-
ported by a DA, (meaning that the diagnostic out-
put consists of a set of candidate diagnoses), then
the isolation accuracy and the classification errors
are calculated for each predicted component mode
vector and weighted by the candidate probabilities
reported by the DA as it is seen in Eq. (20) and
Eq. (14). Mia and Merr are very useful for single
diagnoses but with multiple candidates they are
less intuitive. The metric that follows is loosely
based on the concept of “repair effort” and partly
remedies this problem.

A.2 Utilities

In what follows we show the derivations of the
three utility metrics (system repair utility Msru,
diagnosis repair utility Mdru, and utility Mutl).

A.2.1 System Repair Utility
Consider an injected fault ω⋆ (ω⋆ is a set of faulty
components) and a diagnostic candidate ω (the
set of components the DA considers faulty). The
number of truly faulty components that are im-
properly diagnosed by the diagnostic algorithm as
healthy (false negatives) is n = |ω⋆\ω| (see Fig. 4).
In general a diagnostician has to perform extra
work to verify a diagnostic candidate ω, which
must be reflected in the system repair utility. We
assume that he or she has access to a test oracle
that reports if a component c is healthy or faulty.

We first determine what the expected number
of tests a diagnostician has to perform to test all
components in ω⋆ \ ω (the false negatives) if the
diagnostician chooses untested components at ran-
dom with uniform probability. In the worst case,
the diagnostician has to test all the remaining
COMPS\ω components (the diagnostic algorithm
has already determined the state of all components
in ω). Consider the average situation. We denote
N = |COMPS \ ω|. N is the size of the “popula-
tion” of components to be tested.

The probability of observing s − 1 successes
(faulty components) in k + s− 1 trials (i.e., k ora-
cle tests) is given by the direct application of the
hypergeometric distribution:

p(k, s− 1) =

(

n
s−1

)(

N−n
k

)

(

N

k+s−1

) (24)

The probability p(k, s) of then observing a faulty
component in the next oracle test is simply the
number of remaining false negatives n − (s − 1)
divided by the size of the remaining population
(N − (s + k − 1)):

p(k, s) =
n− s + 1

N − k − s + 1
(25)

and the probability of having exactly k oracle
faults up to the s-th test, is then the product of

25

these two probabilities:

p′(k, s, n, N) =

(

n
s−1

)(

N−n
k

)

(n− s + 1)
(

N

k+s−1

)

(N − k − s + 1)
(26)

The formula above is the probability mass of the
inverse hypergeometric distribution that, in our
case, yields the probabilities for testing k healthy
components before we find s faulty components
out of the population (no repetitions). The ex-
pected value E′[k] of p′(k, s, n, N) (from the defi-
nition of a first central moment of a random vari-
able) is:

E′[k] =
n

∑

x=0

xp′(x, s, n, N) (27)

Replacing p′(k, s, n, N) in (27) and simplifying
gives us the mean of the inverse hypergeometric
distribution2:

E′[k] =
s(N − n)

n + 1
(28)

As we are interested in finding s = n faulty com-
ponents, the expected value E′(n, N) becomes:

E′[k] =
n(N − n)

n + 1
(29)

The expected number of tests E[t] (as opposed to
the expected number of faulty components E′[k])
then becomes:

E[t] =
n(N − n)

n + 1
+ n =

n(N + 1)

n + 1
(30)

The expected number of tests E[t] is then normal-
ized by the number of components f and flipped
alongside the y axis to give the system repair util-
ity:

msru = 1−
n(N + 1)

f(n + 1)
(31)

Plotting the system repair utility msru against
a variable number of false negatives is shown in
Fig. 14. One can see that unlike merr which
changes linearly, msru “penalizes” improperly di-
agnosed components exponentially.

The system repair utility for a set of diagnoses
is defined as:

Msru =
∑

ω∈Ω

W (ω)msru(ω⋆, ω) (32)

where W (ω) is the weight of a diagnosis ω such
that:

∑

ω∈Ω

W (ω) = 1 (33)

All weights W (ω), ω ∈ Ω, are computed by the
diagnostic algorithm.

2For a detailed derivation of the negative hyperge-
ometric mean, see (Schuster & Sype, 1987).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m
sr

u

n
|COMPS|

Figure 14: msru as a function of n

A.3 Diagnosis Repair Utility

Using E[t] in a metric is not enough as it only
captures the effort to “eliminate” (test) all false
negatives. The size of the set of false positives is
n̄ = |ω\ω⋆| (see Fig. 4). To find all false positives,
the diagnostician has to test in the worst case all
components in ω. Hence, the general population
is N̄ = |ω|. Repeating the argument for E[t] we
determine the expected number of tests for testing
all false positives E[t̄]:

E[t̄] =
n̄(N̄ + 1)

n̄ + 1
(34)

Similarly, the diagnostic repair utility mdru is the
normalized E[t̄]:

mdru = 1−
n̄(N̄ + 1)

f(n̄ + 1)
(35)

The diagnosis repair utility for a set of diagnoses
is defined as:

Mdru =
∑

ω∈Ω

W (ω)mdru(ω⋆, ω) (36)

A.4 Utility

The utility metric (per candidate) is a combination
of msru and mdru:

mutl = 1−
E[t] + E[t̄]

f
= (37)

= 1−
n(N + 1)

f(n + 1)
−

n̄(N̄ + 1)

f(n̄ + 1)
(38)

The utility metric (per scenario) is

Mutl =
∑

ω∈Ω

W (ω)mutl(ω
⋆, ω) (39)

Figure 15 plots mutl for varying numbers of false
negatives and false positives in a (symmetric) case
where the cardinality of the injected fault is half
the number of components. Normally, the num-
ber of injected faulty components |ω⋆| is small

26

compared to the total number of components f ,
which leads to an asymmetric mutl plot. In such
cases, N̄ ≪ N , hence the role of the false positives
is small. In Fig. 15, there is a global optimum
mutl = 1 for n = 0 and n̄ = 0, i.e., all components
in ω are classified correctly.

n
|COMPS|

n̄
|COMPS|

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1

0

0.5

1

m
u
tl

Figure 15: mutl as a function of n and n̄

B SYSTEM DESCRIPTION FORMAT

Consider c17, the smallest ISCAS85 circuit (too
simple to include in our benchmark). An exam-
ple system description starts by defining a number
of components in the following manner (we have
truncated the XML code):

<?xml version="1.0" encoding="UTF-8"?>

<systemCatalog ...>
<systemInstances>

<systemInstance id="c17" system="c17" />
</systemInstances>
<systems>

<system>
<systemName>c17</systemName>
<description>
The c17 ISCAS85 combina-

tional circuit.
</description>
<components>
<component>

<name>i1</name>
<componentType>port</componentType>

</component>
<component>

<name>gate11</name>
<componentType>nand2</componentType>

</component>
<component>

<name>gate11.o</name>
<componentType>wire</componentType>

</component>
...

Part of the topology of c17 is described in the XML
excerpt below:

<connections>
<connection>

<c1>gate10.o</c1><c2>z1</c2>
</connection>
<connection>

<c1>gate10.i1</c1><c2>i1</c2>
</connection>
<connection>

<c1>gate10.i2</c1><c2>i3</c2>
</connection>

...
<connections>

The component type specifying a circuit breaker
and shown next is part of ADAPT-Lite and
ADAPT (this component type is referenced, for
example, by a component with unique identifier
CB180):

<componentType xsi:type="circuitBreaker">
<name>CircuitBreaker4Amp</name>
<description>

4 Amp CircuitBreaker
</description>
<modesRef>CircuitBreaker</modesRef>
<rating>4</rating>

</componentType>

Another example of a component type is the AC
voltage sensor shown below.

<componentType xsi:type="sensor">
<name>ACVoltageSensor</name>
<description>

AC voltage sensor.
</description>
<modesRef>ScalarSensor</modesRef>
<sensorValue xsi:type="numberValue">

<dataType>double</dataType>
<rangeMin>0</rangeMin>
<rangeMax>150</rangeMax>

</sensorValue>
<engUnits>VAC</engUnits>

</componentType>

Below is shown a nand-gate, part of a digital cir-
cuit.

<componentType>
<name>nand2</name>
<description>

A 2-input logic NAND gate.
</description>
<modesRef>gate</modesRef>

</componentType>

Finally, we have the modes of a circuit-breaker.

<modeGroup>
<name>CircuitBreaker</name>
<mode xsi:type="mode">

<name>Nominal</name>
<description>
Transmits current and voltage ...

</description>
</mode>
<mode xsi:type="mode">

<name>Tripped</name>
<description>

27

Breaks the circuit and must be ...
</description>

</mode>
<mode xsi:type="faultMode">

<name>FailedOpen</name>
<description>
Trips even though current is ...

</description>
<faultSource>Hardware</faultSource>
<parameters/>

</mode>
</modeGroup>

C MESSAGE FORMATS

Though there are additional message types, the
most important messages for the purpose of bench-
marking are the sensor data message, command
message, and diagnosis message, described below.

C.1 Sensor/Command Data

Sensor data are defined broadly as a map of sensor
IDs to sensor values (observations). Sensor values
can be of any type; currently the framework al-
lows for integer, real, boolean, and string values.
The type of each observation is indicated by the
system’s XML catalog.

SensorMessage

+timestamp
+sensorValues: Map<sensorIds→sensorValues>

CommandMessage

+timestamp
+commandID: string
+command: commandValue

Table 15: Sensor and command message format

Commandable components contain an additional
entry in the system catalog specifying a command
ID and command value type (analogous to sen-
sor value type). The command message repre-
sents the issuance of a command to the system.
In the ADAPT system, for example, the message
(EY144 CL, true) signifies that relay EY144 is be-
ing commanded to close. “EY144 CL” is the com-
mand ID, and“true” is the command value (in this
case, a Boolean).

C.2 Diagnosis Result Format

The DA’s output (i.e., estimate of the physical sta-
tus of the system) is standardized to facilitate the
generation of common data sets and the calcula-
tion of the benchmarking metrics, which are intro-
duced in Sec. 3.3. The resulting diagnosis message
is summarized in Table 16 and contains:

timestamp: a value indicating when the diagno-
sis has been issued by the algorithm.

candidateSet: a candidate fault set is a list of
candidates an algorithm reports as a diagno-
sis. A candidate fault set may include a single

candidate with a single or multiple faults; or
multiple candidates each with a single or mul-
tiple faults. It is assumed that only one can-
didate in a candidate fault set can represent
the system at any given time.

detectionSignal: a Boolean value as to whether
the diagnosis system has detected a fault.

isolationSignal: a Boolean value as to whether
the diagnosis system has isolated a candidate
or a set of candidates.

DiagnosisMessage

+timestamp

+candidateSet: Set <Candidate>
+detectionSignal: Boolean
+isolationSignal: Boolean
+notes: string

Candidate

+faults: Map<componentIds→componentState>
+weight: double

Table 16: Diagnosis message format

In addition, each candidate in the candidate set
has an associated weight. Candidate weights are
normalized by the framework such that their sum
for any given diagnosis is 1.

28

