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ABSTRACT

One of the main problems of Model-Based Di-
agnosis (MBD) is, given a system description
and an observation, to compute all cardinality-
minimal diagnoses. This problem is often NP-
hard or harder and overcoming combinational ex-
plosion attracts a lot of research. One way to deal
with the computation complexity of MBD is to
use stochastic methods. Stochastic methods for
MBD trade optimality for speed. Similar to re-
lated problems, such as stochastic ALLSAT or
model counting, the main problem with stochas-
tic diagnostic search is the lack of termination cri-
terion. In this paper we propose a novel method
for predicting the probability of stochastic diag-
nostic search returning a cardinality-minimal di-
agnosis. This method is based on a computation-
ally very efficient approximate model of the di-
agnostic search process. The probability of com-
puting a cardinality-minimal diagnosis is used as
a termination criterion for the stochastic diagnos-
tic search. We show several models with various
trade-offs in complexity versus accuracy.

1 INTRODUCTION

Conventional algorithms for Model-Based Diagno-
sis (MBD) are deterministic and are fast in finding
low cardinality faults, e.g., when there is only one
faulty component in the system. A popular deter-
ministic approach used in model-based diagnosis is
the conflict-directed A* (CDA*) algorithm (Williams
and Ragno, 2007), which is built upon the concepts
of the general diagnostic engine (GDE) (De Kleer
and Williams, 1987). This method tries to find
the best next candidate while continuously decreas-
ing the search space by checking for inconsistencies.
A similar conflict-directed best first search algorithm
is adopted by the Livingstone kernel (Williams and
Nayak, 1996), which is successfully used in several
missions of NASA (Bajwa and Sweet, 2003; Muscet-
tola et al., 1998). Another state-of-the-art approach
to model-based diagnosis, called HA* (Feldman and
van Gemund, 2006), exploits the hierarchy of system

models. It consists of an expensive pre-processing step
and a very fast diagnosis step. Because the exponential
cost of pre-processing is done only once for a model,
this is an attractive approach.

However, when multiple components fail at the
same time, these deterministic algorithms suffer from
poor performance due to the fact that time complexity
is exponential in the number of faults. A popular ex-
ample of a multiple component failure in the field of
space exploration is the Apollo 13 crisis, as mentioned
in (Muscettola et al., 1998). In this situation no less
than five faults occurred in the system simultaneously:
three electrical shorts, the bursting of a tank-line, and
a pressure jacket. With little sensor information, diag-
nosing the health state of the system was a huge chal-
lenge for ground control.

SAFARI (StochAstic Fault diagnosis AlgoRIthm)
(Feldman et al., 2010) has been developed to overcome
the time complexity of the conventional models. Be-
ing a stochastic algorithm, the time to solve a problem
becomes roughly constant, independent of the number
of simultaneous faulty components in the system. It
has been shown (Feldman et al., 2008) that SAFARI is
able to produce possible diagnoses for difficult prob-
lems that deterministic algorithms are not able to di-
agnose within a reasonable amount of time (weeks or
months).

We define the performance of a stochastic diagno-
sis algorithm in terms of the probability density of the
low cardinality solutions, as the solutions of low cardi-
nality have the highest probability of being the correct
diagnosis (Janssen, 2011). If a stochastic diagnosis en-
gine has a high probability of returning a solution of
low cardinality, then we consider the performance of
the algorithm to be good. For example, for an imagi-
nary problem there exists a pool of possible solutions
with a Gaussian-like cardinality distribution. An al-
gorithm with bad performance would randomly pick a
solution from this pool. An algorithm with good per-
formance would be able to return low cardinality so-
lutions with higher probability. This is illustrated in
Fig. 1.

The applicability of the original SAFARI algorithm
is limited due to the uncertainty of completeness and
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Figure 1: (a) Bad performance: probability density
highest at medium cardinalities. (b) Good perfor-
mance: probability density highest at low cardinalities

optimality of the results. A correct performance model
of the algorithm can give an indication of the opti-
mality and completeness during the diagnosis process.
This model may lead to a prediction of the behavior
and a termination criterion that assures that the proba-
bility of finding a new relevant diagnosis is sufficiently
small. The problem statement therefore becomes:

Can we find a correct performance model for the
SAFARI algorithm and from this model devise a
termination criterion, in order to provide a proper
termination condition of the diagnosis process,
while ensuring a certain degree of completeness
of the returned diagnoses?

In this paper an analysis is made of the problem
mentioned above and possible solutions are explored
and discussed. The contributions of this paper are
listed below.

• The current performance model of SAFARI as de-
fined in (Feldman et al., 2010), dubbed A0 in this
paper, is shown to be insufficient to form a ba-
sis for a termination criterion, as it disregards the
impact of fault cardinalities other than the target
cardinality.

• A characterization of performance S is intro-
duced, that will categorize the many solutions
possible for a system into a relatively small set,
that is used to further analyze and model the SA-
FARI algorithm.

• The characterization of performance S is shown
to be the determining factor of the behavior of
SAFARI.

• Different models of the SAFARI algorithms are
explored, each model having a different level
of abstraction from the actual algorithm. These
models, A1, A2, and A3, are compared and one
model is selected as best candidate for modeling
SAFARI.

• Having analyzed and modeled the SAFARI algo-
rithm, a criterion is proposed to terminate the al-
gorithm while ensuring a certain level of com-
pleteness.

2 TECHNICAL BACKGROUND AND THE
SAFARI ALGORITHM

The SAFARI algorithm for greedy diagnostic search is
described by Feldman et al. (2010). This paper can be

considered as a continuation of the work of Feldman
et al. whose results, notation, and terminology we use
fully.

We have as a running example in the current pa-
per a weak-fault model of the 74180 circuit (shown
in Fig. 2), using the standard modeling approach and
formalism.

3 PERFORMANCE MODELING

In what follows we explore a feature of the diagnostic
search space that we can use for modeling (and pre-
dicting) the performance of SAFARI.

3.1 Performance Characteristics of Greedy
Stochastic Search

SAFARI does not exploit the system model for opti-
mizing the way it searches for solutions, i.e., the only
subroutine of SAFARI that uses all information in SD
is the consistency checking oracle. The algorithm flips
literals randomly, not based on SD∧OBS, and the be-
havior of SAFARI when reaching one diagnosis of, for
example, cardinality |ω| = 3 is similar to its behavior
when reaching another diagnosis of the same cardinal-
ity.

Consider the set of subset-minimal diagnoses

Ω⊆(SD ∧ α) for a given model SD and a given obser-
vation α. Let us denote the number of subset-minimal
diagnoses of cardinality |ω⊆| as ||ω⊆||. Given SD∧α,
the sizes of the various sets of subset-minimal diag-

noses ||ω⊆|| give us a distribution function S as de-
fined next.

Definition 1 (S-signature). Given a model SD and an
observation α, the S-signature of SD ∧ α, denoted as
S(SD∧α), is defined as the distribution of the sizes of

the sets {ω⊆ : |ω⊆| = i} for i = 1, 2, . . . , |COMPS|.

Abusing the notation, in this paper we do not specify
anymore SD, because it is fixed, i.e., we write S(α)
instead of S(SD ∧ α).

To illustrate S, let the search space for an ob-
servation α on a system of size |COMPS| = 14
consist of one |ω⊆| = 1 subset-minimal diagnosis,

four |ω⊆| = 2 subset-minimal diagnoses and twenty-

one |ω⊆| = 3 subset-minimal diagnoses. There are
no subset-minimal diagnoses of higher cardinalities.
Then for this observation α, we write the following
expression:

S(α) = {1, 4, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

For brevity, we omit the trailing zeroes and write:

S(α) = {1, 4, 21}

Consider the set of all possible observations α.
Clearly, for a system of |OBS| Boolean observables

there are 2|OBS| different observations (in MBD we
usually assume that there are no physically impossi-
ble observations and that all observations are of equal
likelihood). There are 4 096 different observations for
our running example (|OBS| = 12). We have com-
puted all S-signatures for the 74180 model by using
an exhaustive method. The set of S-signatures shows
surprisingly little variation as is visible in Table 1. It
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Figure 2: The 74180 circuit

MC S count

0 {0, 0, 0, 0, 0} 1024

1 {1, 4, 21, 0, 0} 128

{2, 7, 21, 0, 0} 256

{2, 10, 0, 0, 0} 256

{2, 21, 0, 0, 0} 256

{3, 0, 0, 0, 0} 512

{3, 14, 0, 0, 0} 256

{3, 28, 0, 0, 0} 256

{4, 21, 0, 0, 0} 256

{7, 8, 0, 0, 0} 256

{7, 9, 0, 0, 0} 256

2 {0, 9, 0, 0, 0} 256

{0, 11, 21, 0, 0} 128

Table 1: All possible S-signatures of the 74180 model

turns out that the example system contains only 13 dif-
ferent values of S.

Next consider all observations α leading to a certain
signature S(α). In the following experiment on our
example model 74180, we have configured the “greed-
iness” parameter M of SAFARI to M = 5 (recall that
M is the number of unsuccessful literal flips before
SAFARI gives-up improving the current, possibly sub-
optimal, diagnosis). Figure 3 shows a box plot of the
progress of SAFARI with all observations leading to a
signature S(α) = {1, 4, 21}. We have repeated the
experiment 1 000 times to compensate the stochastic
nature of SAFARI. As there are 128 observations lead-
ing to this signature (see Table 1), we have executed
a total of 128 000 SAFARI runs for generating the data
for this plot.

We have repeated the experiment with another sig-
nature S(α) = {2, 10}. The results are shown in
Fig. 4.

The plots in Fig. 3 and Fig. 4 show that the progress
of SAFARI depends on the S-signature and is largely
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Figure 3: Progress of SAFARI (M = 5) of all observa-
tions with S = {1, 4, 21}

independent of the actual composition of the obser-
vation α. For example, given a signature S(α) =
{1, 4, 21}, 50% of the observations lead to a diagno-
sis of cardinality 1 with probability between 0.31 and
0.37. Similarly, given a signature S(α) = {2, 10},
50% of the observations lead to a diagnosis of cardi-
nality 2 with probability between 0.36 and 0.41.

Motivated by the above example we can make the
main hypothesis of this paper:

Hypothesis 1. Given a system description SD, an S-
signature S(α) is a statistically significant predictor of
the performance of SAFARI.

3.2 High-Fidelity Model A3

In what follows we assume that SAFARI is run only
once (N = 1) and that it is configured to guarantee the
computation of one subset-minimal diagnosis (M =
|COMPS|).

We can express the state of SAFARI as an S-
signature. In the beginning, there is non-zero prob-
ability of reaching any of the subset-minimal diag-
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Figure 5: State space of SAFARI with a system of size |COMPS| = 6 and an observation of S = {0, 1, 2}
(terminating states are with thicker lines and gray background)
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Figure 4: Progress of SAFARI (M = 5) of all observa-
tions with S = {2, 10}

noses in the S-signature. With each literal flip, SA-
FARI makes zero or more subset-minimal diagnoses
unreachable until there is only one remaining subset-
minimal diagnosis. The whole state-space of SAFARI

for a given system of size |COMPS| = 6 and an initial
S-signature {0, 1, 2} is shown in Fig. 5.

The progress of SAFARI in each run is expressed as

k. Initially1, k = |COMPS|. The state of SAFARI at

1In practice, SAFARI starts from a random diagnosis ω

that is constructed from the solution of a random satisfiable
assignment of SD ∧ α but for this analysis we assume that
SAFARI starts from the all-faulty assumption without loss of
much generality.

step k is denoted as S(k). Consider the change of the
state of SAFARI transitioning from step k to step k−1.
We denote this change as:

Ṡ(k) = S(k)− S(k − 1)

For example, if S(3) = {0, 1, 2} and S(2) = {0, 0, 1},

then Ṡ(k) = {0, 1, 1}.
Consider the general change of state of SAFARI:

Ṡ(k) = {ṡ1, ṡ2, . . . , ṡm}

where m = |S|.
Assuming subset-minimal diagnoses do not share

literals we have:

max
i

Ṡi(k) = 1

If we also assume that false literals are uniformly dis-
tributed, the probability of a change of state is:

p(k = Ṡi) =
i · ci

k
(1)

where i is the cardinality of the diagnosis that is
made unreachable. Notice that k is the number of
“unflipped” false literals at step k, initially k =
|COMPS|.

In model A3 we assume that the solutions that are
present in S(k) are randomly positioned in the health
vector. The probability of each traversal from state
S(k) to state S(k−1) depends on the number of ways
the new state can be reached, the probability that cer-
tain solutions are made infeasible, and the probability
that the remaining solutions have no variables flipped.
For example, suppose that the actual solutions to a
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state h |ω⊆|

s1 001111 |ω⊆| = 2
s2 010011 |ω⊆| = 3
s3 101100 |ω⊆| = 3

Table 2: A sample initial configuration of SAFARI

problem of a system of |COMPS| = 6 are shown in
Table 2.

The starting state for the initial configuration shown
in Table 2 is S(k = 6) = {0, 1, 2}. Given this system
and its starting state of Model A3, consider the traver-
sal to state S(k = 5) = {0, 1, 1}. This is a decrease

of S3 by one, i.e. one of the |ω⊆| = 3 solutions, s2 or
s3, is made infeasible by flipping one of its variables.
The number of solutions per cardinality that are made
infeasible is given by:

S(k)− S(k − 1) = {0, 0, 1}

In this case, either s2 or s3 is made infeasible, making
the number of combinations equal to 2. In general, the
number of ways one can choose the solutions that are
made infeasible out of the complete set of solutions is
given by

∏

i

(

Si(k)

Si(k − 1)

)

where Si is the number of solutions in S for cardinality

|ω⊆| = i.

In order to make a |ω⊆| = 3 solution infeasible, ei-
ther a variable of s2 is flipped, or a variable belonging

to s3. The probability of making any |ω⊆| = 3 so-

lution infeasible given k = 6 is equal to 3
6 since only

one of its variables needs to be flipped in order for the
solution to be impossible to be reached. In the case of
the example, either h1, h3 or h4 needs to be flipped in
order to make solution s2 infeasible.

The probability that the remaining solutions (s1 and

the remaining |ω⊆| = 3 solution) have none of their
variables flipped is equal to:

(

1−
2

6

)

·

(

1−
3

6

)

=
1

3

Combining it all results in a probability p = 1
3 that a

variable flip results in reaching a state where one of

the two |ω⊆| = 3 solutions is made infeasible, while

the other C = 3 solution and the |ω⊆| = 2 solution
remain feasible.

In general this probability is equal to:

p =
∏

i

[

(

Si(k)

Si(k − 1)

) (

i

k

)Ṡi(k) (

1−
i

k

)Si(k−1)
]

To compute the probability of SAFARI reaching an

end state S we have to sum all p(k = Ṡi) from the
initial state of SAFARI to the end state. The major
problem with this model is that there are exponentially

many paths from the initial state of SAFARI to an end
state. Consider, for example, Fig. 5. To end-up in state
{0, 1, 0}, SAFARI can make a direct transition at step
k = 6, or it can remain at {0, 1, 2} until step k = 4
and then it may transition to the final state {0, 1, 0}.

3.3 Medium-Fidelity Model A2

Based on model A3 another model is created to min-
imize model complexity while abstracting as little as
possible. The approach used in this model A2 is to
simulate a SAFARI run while keeping track of the mean
intermediate S at each step of the algorithm. In this
approach, the cardinality values within S(k) are mean
values, averaged over all possible trajectories leading
to S(k). The intermediate S(k) is expressed in terms
of the intermediate S(k − 1).

For example, consider a system of |COMPS| = 6
components and an S-signature S = {0, 1, 2}, where
the actual subset-minimal diagnoses are shown in Ta-
ble 2. As with the real algorithm, the model starts with

k = |COMPS|. S(6) contains one |ω⊆| = 2 diagno-

sis and two |ω⊆| = 3 diagnoses. Flipping a variable
which causes s1 to be unreachable has a probability of
2
6 . If this is done a large number of times, on average,
1
3 of the |ω⊆| = 2 diagnoses would remain. The av-

erage number of |ω⊆| = 2 diagnoses, which is made
impossible to reach by flipping one of the six variables,
is equal to:

S2 ·
2

k
= 1 ·

2

6
=

1

3
In other words, on average, a third of the number of

|ω⊆| = 2 subset-minimal diagnoses is made unreach-
able, because the variable that was flipped belonged

to a |ω⊆| = 2 subset-minimal diagnosis. The same

is done for |ω⊆| = 3, where the average number of
subset-minimal diagnoses that is made impossible to
reach is equal to

S3 ·
3

k
= 2 ·

3

6
= 1

These average values are then subtracted from the pre-
vious S to obtain the average S at the new k, making

S(k−1) = S(k)−{0, 1
3 , 1} = {0, 2

3 , 1}. The average

S(k − 2) is calculated in the same way, but it is based
on the generated average S(k − 1).

The above can be generalized in the following for-
mula for updating the S-signature at step k, k =
|COMPS|, |COMPS| − 1, . . . , 1:

Si(k − 1) = Si(k)− Si(k) ·
i

k
(2)

When the model is applied on a starting value of S
a complete trace of averages of intermediate S is ac-
quired. This equals the average number of subset-
minimal diagnoses of each cardinality that would still
be reachable at each step k of the actual SAFARI algo-
rithm. The complete trace of the example is shown in
Table 3.

Note, that, compared to model A3, the Markov
chain has reduced to a 1-dimensional chain, greatly
reducing model complexity. Table 4 shows example
traces of the example system of size |COMPS| =
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k S

6 {0, 1.00, 2.00}
5 {0, 0.67, 1.00}
4 {0, 0.40, 0.40}
3 {0, 0.20, 0.10}
2 {0, 0.07, 0.00}
1 {0, 0.00, 0.00}

Table 3: Execution trace of model A2 and the example
from Table 2

14 and an observation with an S-signature S =
{1, 4, 21}. Both traces are acquired by running SA-
FARI multiple times and taking the average number
of subset-minimal diagnoses at each k. The trace of
model A2 is very accurate when compared with the ac-
tual SAFARI algorithm. Unfortunately, however, this is
only a valid model for M = 1, which is displayed on
the left of Table 4. At the right hand side of the ta-
ble is the trace of SAFARI when run with M = 5 on
the same observation, averaged over 10 000 runs. Both
traces show that at k = 14 the intermediate S is still
equal to the original. The values of S at each of the car-
dinalities decrease with every next k, but we see that
the value of S3 decreases significantly faster than the
others, which is because these relatively larger subset-
minimal diagnoses are made unreachable with a larger
probability. The difference in the two traces is that
with M = 1 the numbers decrease to zero, while with
a large enough M the values decrease to some value
higher than zero at a k equal to the cardinality.

k S for M = 1 S for M = 5

14 {1.00, 4.00, 21.00} {1.00, 4.00, 21.00}
13 {0.93, 3.43, 16.50} {0.93, 3.43, 16.49}
12 {0.86, 2.90, 12.70} {0.86, 2.90, 12.70}
11 {0.79, 2.42, 9.52} {0.78, 2.42, 9.53}
10 {0.71, 1.98, 6.92} {0.71, 1.98, 6.94}
9 {0.64, 1.58, 4.85} {0.65, 1.60, 4.89}
8 {0.57, 1.23, 3.23} {0.58, 1.26, 3.32}
7 {0.50, 0.92, 2.02} {0.52, 0.97, 2.17}
6 {0.43, 0.66, 1.15} {0.47, 0.75, 1.37}
5 {0.36, 0.44, 0.58} {0.43, 0.58, 0.84}
4 {0.29, 0.26, 0.23} {0.40, 0.46, 0.48}
3 {0.21, 0.13, 0.06} {0.38, 0.39, 0.26}
2 {0.14, 0.04, 0.00} {0.38, 0.36, 0.00}
1 {0.07, 0.00, 0.00} {0.38, 0.00, 0.00}

Table 4: Averaged S over 10 000 runs of SAFARI on a
74180 observation with an initial S = {1, 4, 21}

The effect of the average number of subset-minimal
diagnoses decreasing less when a larger value for M
is chosen is explained by the fact that a variable flip is
retried after an inconsistency. The algorithm is able to
reach lower k, adding to the average number of subset-
minimal diagnoses at that k. For M = 5 (i.e., exhaus-
tive retrying) it turns out that the values of the average

number of subset-minimal diagnoses at k equal to the
cardinality, which are underlined in Table 4, are ex-
actly equal to the distribution of these cardinalities of
the actual SAFARI algorithm. This leads us to the fol-
lowing theorem:

Theorem 1. If M = |COMPS|, then the trace of an
ideal model A2 contains the probability distribution of
cardinalities on its diagonal.

Proof. The diagonal contains the average values of S
for which the subset-minimal diagnosis cardinality is
equal to the remaining number of unflipped variables
(k = c). If SAFARI is run with a sufficiently large
M , the intermediate set of reachable subset-minimal
diagnoses contains only one subset-minimal diagnosis
when a cardinality is returned. Because a maximum of
one reachable subset-minimal diagnosis can remain at
k = C, and minimality of subset-minimal diagnoses is
guaranteed, the sum of the average number of subset-
minimal diagnoses remaining at k = C for all C is
equal to one. Therefore the diagonal contains the prob-
ability distribution of cardinalities which are returned
by SAFARI.

Theorem 1 and Eq. (2) give us the probability

p(|ω⊆| = i) of SAFARI configured with M =
|COMPS| computing a subset-minimal diagnosis ω⊆

of cardinality i:

p
(∣

∣ω⊆
∣

∣ = i
)

= Si (i) (3)

The complexity of computing the A2 model is low
– all probabilities in Eq. 3 can be computed in time
O(|COMPS|2).

3.4 Low-Fidelity Model A1

Model A3 and, less so, model A2 try to follow the
SAFARI algorithm step by step, calculating interme-
diate probabilities of each cardinality. The low level of
abstraction of model A3 results in a computationally
complex model, with the number of possible states ex-
ponentially growing for larger M . Model A2 is more
abstract than A3 resulting in lower computational cost.

Only 1
2M2 calculations are required to compute the

estimated probability distribution function (pdf). With
the next model, A1, we will further decrease the com-
putational complexity and have an even greater ab-
straction.

Where models A3 and A2 follow the steps of the
SAFARI algorithm, lowering k at each step, model A1
computes the probability of each cardinality directly
from S. Again, we assume that M = |COMPS|.

Given an S-signature S, the non-normalized prob-

ability n
(∣

∣ω⊆
∣

∣ = i
)

of SAFARI returning a subset-
minimal diagnosis of cardinality i is modeled as:

n
(∣

∣ω⊆
∣

∣ = i
)

=
Si

(

|COMPS|
i

)
(4)

and the normalized probability p
(∣

∣ω⊆
∣

∣ = i
)

is:

p
(
∣

∣ω⊆
∣

∣ = i
)

=
ni

∑

n
(5)
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where Si is the number of subset-minimal diagnoses
of cardinality i in S(α).

In A1, the probability of returning a diagnosis of
cardinality i is determined by the number of diagnoses
of this cardinality divided by the number of ways a
diagnosis can be reached, independently of other diag-
noses. This probability is decreased if more diagnoses

exist in the search space, however, an |ω⊆| = 1 diag-

nosis has more impact than an |ω⊆| = 3 diagnosis.

4 AUTOMATIC TERMINATION OF SAFARI

In what follows we show how to use the prediction
from the SAFARI model for terminating the greedy
stochastic search.

Algorithm 1 computes an approximation to all
cardinality-minimal diagnoses and acts as a wrapper
around SAFARI. The idea is to first call SAFARI with a
small N to compute an initial S-signature. This signa-

ture S is used to predict the probability p≤ that SAFARI

will compute a cardinality-minimal diagnosis. From
this probability we compute a new value of N . The
process is repeated until no new cardinality-minimal
diagnoses are computed.

Algorithm 1 Use SAFARI to compute an approxima-
tion to all cardinality-minimal diagnoses

1: function AUTOSAFARI(DS, α, M, N ′)
2: returns a set of diagnoses

inputs: DS diagnostic system
α, term, observation
M , integer, climb restart limit
N ′, integer, initial number of runs

local variables: Ω, Ω⊆,sets of diagnoses,
initially empty

S, S-signature

p≤, real, probability
B, integer, subsequent runs

3: Ω← SAFARI(DS, α, M, N ′)
4: while NEWDIAGNOSES

≤(Ω, Ω⊆) do

5: Ω⊆ ← Ω⊆ ∪ Ω
6: S ← SIGNATURE(Ω⊆)
7: p≤ ← MODEL(S)
8: B ← ⌈ 1

p≤ ⌉

9: Ω← SAFARI(DS, α, M, B)
10: end while
11: end function

Algorithm 1 works as follows. First SAFARI is
called with a small number of runs, for example, N =
10 (line 3). The initial set of diagnoses is stored in Ω.
The subroutine NEWDIAGNOSES returns true iff there
are new diagnoses in Ω, compared to Ω⊆. Clearly the
first indication always returns true. The signature of
the set of subset-minimal diagnoses Ω is computed in
line 6. In line 7 we estimate a model based on the in-
termediate set of diagnoses (S-signature). Based on
this model we compute a new value of the number of
runs of SAFARI. The process is repeated until no new
cardinality-minimal diagnoses are computed.

5 EXPERIMENTAL RESULTS

Figure 6 shows a comparison of SAFARI and models
A3, A2, and A1 for 74180 and different S-signatures.

When compared to the SAFARI output, model A2
seems to model SAFARI more accurately that model
A3, which serves as a simulator which should resem-
ble SAFARI closest. This can be explained by the
fact that model A3 assumes random observations of
S, while SAFARI is run on real observations on the
system, which are considered outliers compared to the
random observations. The output of model A2 differs
from the output of model A3 because of the assump-
tion that the variables of the solutions are assumed to
be randomly distributed in the health vector and there-
fore does not account for solution subsumption. By
chance, this difference transforms the resulting pdf to
resemble the SAFARI outcome more that model A3. It
would be more accurate to compare the model to the
reference model A3, which stands as close as possible
to the actual algorithm, but which excludes the infor-
mation of the positioning of solution variables in the
health vector. Looking at the output of the normalized
version of model A2 we see that the lower cardinalities
have a slightly larger probability mass when compared
to the output of model A3. Nonetheless, the difference
between model A3 and the normalized model A2 is
small, indicating that model A2 is usable as a model
for the behavior of the SAFARI algorithm. Both model
A3 and A2 result in outputs with no probability mass at
cardinalities of which there are no existing solutions.

6 CONCLUSIONS

In this paper we have explored three new performance
models for the SAFARI algorithm, as an improvement
on the original model, A0. All three models use S as
input and return the pdf of solution cardinalities fa.

First, we have discussed model A3, the least abstract
model, which defines all possible transitions from one
state (intermediate S) to all possible next states. Any
state consisting of a single cardinality serves as end-
ing state for the model. By calculating the probabili-
ties of all state transitions, the probability of reaching
each cardinality can be determined. However, this is
a very expensive method and unrealistic for large sys-
tems, since the number of possible states grow expo-
nentially for larger M . The Monte Carlo approach,
traversing the model multiple times to achieve a pdf of
solution cardinalities, is another possibility, however,
this method consumes time and could suffer from lack
of numerical precision.

Second, the more abstract model A2 is introduced,
which starts with a given S, and, with each step k, cal-
culates the average S for that step in the algorithm.
The resulting pdf is constructed by using the values on
the diagonal of the trace of average S of the model.
Since this computational complexity of this model
is small (O(M2)), and because this model seems to
model the actual algorithm more accurately, this is a
far more attractive model to use, compared to model
A3.

Last, we have our most abstract model, A1, which
computes the pdf directly (in a two-step approach)
from the characteristic S. It calculates the probability
of returning each cardinality, given only the number of

7
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Figure 6: Comparison of SAFARI output with models A3, A2, and A1

components and the number of solutions of the same
cardinality. After calculating this for all cardinalities,
the pdf is calculated by normalizing the values, which
models the influence that solutions of different cardi-
nality have on each other. This is the computationally
cheapest model and experiments show that it seems to
model SAFARI more accurately than model A2. How-
ever, more extensive testing should be performed, with
different systems and observations, to be able to decide
which of the performance models is best at modeling
SAFARI.
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