
Model-Based Diagnostic Decision-Support
System for Satellites

Alexander Feldman1 and Helena Vicente de Castro2 and
Arjan van Gemund3 and Gregory Provan1

1University College Cork, Cork, Ireland, e-mail: a.feldman@ucc.ie, g.provan@cs.ucc.ie
2CGI, Rotterdam, The Netherlands, e-mail: helena.vicente.de.castro@cgi.com

Delft University of Technology, The Netherlands, e-mail: a.j.c.vangemund@tudelft.nl

Abstract

We propose a novel framework for Model-Based
Diagnosis (MBD) that uses active testing to de-
crease the diagnostic uncertainty. This frame-
work is called LYDIA-NG and combines sev-
eral diagnostic, simulation, and active-testing al-
gorithms. We have illustrated the workings of
LYDIA-NG by building a LYDIA-NG-based de-
cision support system for the Gravity field and
steady-state Ocean Circulation Explorer (GOCE)
satellite. This paper discusses a model of the
GOCE Electrical Power System (EPS), the al-
gorithms for diagnosis and disambiguation, and
the experiments performed with a number of di-
agnostic scenarios. Our experiments produced
no false positive scenarios, no false negative sce-
narios, the average number of classification er-
rors per scenario is 1.25, and the fault detection
time is equal to the computation time. We have
further computed an average fault uncertainty of
2.06×10−3 which can be automatically reduced to
9.5×10−4 by sending a single, automatically com-
puted, telecommand, thus dramatically reducing
the fault isolation time.

1 Introduction
This paper reports on the results of an ESA ITI project,
called Ground-basEd diagNostIc sUpport System (GE-
NIUS). The main goal of GENIUS is to demonstrate the
advantages of adopting Model-Based Diagnosis (MBD) and
active testing for decision support in the operational control
of satellites. As a target subsystem, we have used the power
generation and distribution network of the Gravity field and
steady-state Ocean Circulation Explorer (GOCE) satellite.
To the best of our knowledge, GENIUS is the first system to
apply a model-based active testing algorithm to a real-world
system. The results show that MBD and active testing can
increase the diagnostic accuracy and decrease the fault iso-
lation time.

For the diagnosis and the active testing of GOCE, we have
used the LYDIA-NG modeling language and the LYDIA-NG
suite of algorithms. LYDIA-NG can combine the computa-
tions of multiple simulation engines. An example of a sim-
ulation engine implemented in LYDIA-NG is the analogue
electronic simulator which is based on the well-known Sim-
ulation Program with Integrated Circuit Emphasis (SPICE).

LYDIA-NG also implements several strategies for the gen-
eration of fault candidates and a number of algorithms for
active testing. These algorithms are based on AI search and
include best-first, and bottom-up greedy search. We discuss
all these algorithms and their application to the GOCE satel-
lite.

We validate our approach using nine fault scenarios that
summarize a class of failures. These scenarios include
single- and multiple-fault injections (up to quadruple faults),
masking faults, and faults that cannot be disambiguated by
design. We have considered a class of intermittent faults as
well.

To independently assess the capabilities of the diagnostic
and disambiguation tools, we have created the sensor data
for the diagnostic scenarios by implementing a model of
the GOCE EPS in the ESA-ESOC SIMSAT infrastructure
and not the built-in LYDIA-NG simulation suite. All ex-
periments are performed by using two models of the GOCE
Electrical Power System (EPS), one used for the generation
of telemetry, and the other used by LYDIA-NG for the tasks
of MBD and active testing.

The performance of the diagnostic algorithms has been
measured in terms of diagnostic metrics. In our experiments
we have no false positive scenarios, no false negative scenar-
ios, the average number of classification errors per scenario
is 1.25, and the fault detection time is equal to the compu-
tation time. We have further computed an average fault un-
certainty of 2.06×10−3 which can be automatically reduced
to 9.5 × 10−4 by sending a single, automatically computed,
telecommand, thus dramatically reducing the fault isolation
time.

To facilitate integrating LYDIA-NG with real satellite
monitoring systems, we have designed an Application Pro-
gramming Interface (API) for connecting LYDIA-NG to the
GOCE ground telemetry and telecommands infrastructure.
This allows the automatic translation of telemetry units and
the integration of LYDIA-NG in the satellite ground control
system.

The contributions of this paper are as follows:

• We propose a new framework for MBD called LYDIA-
NG. LYDIA-NG accommodates algorithms for simu-
lation, diagnosis, and active testing. We measure the
diagnostic and disambiguation performance of LYDIA-
NG with a number of diagnostic metric. LYDIA-NG
provides a way to optimize one or more of these met-
rics given the specific user environment.

• We build a decision support system on top of LYDIA-



NG. This decision support system is used for diagnos-
ing the EPS of the GOCE satellite.

• We achieve decrease in the fault isolation time of EPS
failures by applying active testing.

• We introduce a number of EPS diagnostic scenarios
that, in addition to computing performance metrics for
our approach, can be also used for comparison to other
methods.

• We discuss issues related to the interface of LYDIA-
NG with a simulator of telemetry data and a SCADA
system for control of satellites.

2 Related Work
LYDIA-NG belongs to a class of MBD methods that use
continuous-valued models and sensor data, and use entropy-
based methods for test selection to disambiguate diagnoses.
It is a generalization of LYDIA, which used discrete-value
models.

In terms of diagnostics solvers, LYDIA-NG is related
to the HyDE (Hybrid Diagnosis Engine) solver [1]. The
HyDE-S variant accepts as input interval-valued hybrid
models and continuous-valued sensor data. Another solver,
FACT [2], can also use continuous-valued models and sen-
sor data, but requires that the model be represented as a hy-
brid bond graph. Given an anomaly, FACT first uses an
observer-based approach (adopted from the FDI commu-
nity) with statistical techniques for robust fault detection.
Fault isolation is performed using qualitative inference, i.e.,
by matching qualitative deviations caused by fault transients
to those predicted by the model.

There is a large body of work that performs test selec-
tion during diagnostics inference. The majority of these
approaches require discrete-valued Bayesian models and
discrete-valued sensor data. For example, Zheng et al. [3]
adopt Bayesian network (BN) models, and interleave diag-
nostics inference with test selection, which is performed in a
greedy manner. Test selection uses loopy belief propagation
as the inference method, in order to simultaneously com-
pute approximations of marginal and conditional entropies
on multiple subsets of nodes in the BN.

In a similar vein, Wu et al. [4] also use BN methods
for test selection, applying their approach to computer net-
works. Quiao et al. [5] also propose BN test selection
methods, but reduce inference complexity by identifying
the approximate conditional independence of probes, based
on leveraging the conditional independence structure of the
BN.

Bellala et al. [6] consider a related framework, except that
they allow the presence of noise in the model and the obser-
vations. Tolpin and Shimony [7] also frame test selection
within a probabilistic model, but propose the use of value of
information (VOI) as the criterion for selecting the best test.

In contrast to these approaches, LYDIA-NG does not
force the use of a discrete-valued probabilistic model, but
can make use of the continuous-valued models widely used
in many application domains, such as circuit or energy mod-
els.

GENIUS, the design of LYDIA-NG and this paper have
been influenced by the International Diagnostic Competi-
tion (DXC) [8]. The first years of DXC targeted the Electri-
cal Power System (EPS) testbed in the ADAPT lab at NASA

Ames Research Center [9] and we have chosen a real-world
satellite subsystem that resembles ADAPT.

In the experiments of this paper we have used a num-
ber of performance metrics with which we have measured
the performance of our diagnostic and disambiguation algo-
rithms (see Sec. 6.4). These metrics are continuation of the
work done for a DXC paper [10] and we propose that future
DXC competitions use the up-to-date isolation accuracy and
classification error metrics. These metrics assume that the
diagnosis is presented as a probabilistic assignment, while
in DXC the diagnosis is presented as a set of weighted non-
probabilistic assignments. This version simplifies the under-
standing and the computation of the performance metrics.
Further, the uncertainty metric is new. This paper shares
with [10] several citations and a small amount of text in the
beginning of Sec. 6.4 (introductory part describing the evo-
lution of the metrics). This is done for readability and being
self-contained.

3 Concepts and Definitions
In this section we introduce our basic definitions, illustrated
on a small artificial electrical circuit that exposes some prop-
erties that are present in a real-world power-distribution net-
work of a satellite.

3.1 Running Example
All concepts and algorithms in this paper are illustrated with
the help of the circuit shown in Fig. 1. This circuit is best
considered as hybrid because there are analogue compo-
nents such as resistors as well as switches (the latter can,
of course, be modeled as non-linear analog electronic com-
ponents but that would unnecessarily increase the modeling
complexity and would not contribute to the diagnostic accu-
racy).

+

-
V1 24

resistor

A
current
sensor

voltage sourceswitch

+

-
20

A

I1

SW1

SW2

N1

N2

N3

N4

R1

20

10

R2

20

Figure 1: An electrical circuit used as a running example

The circuit in Fig. 1 consists of the voltage source V1, a
current sensor I1, two normally closed switches SW1 and
SW2 and the two resistors R1, and R2. Notice that if we
know the state of the two switches SW1 and SW2, the rest
of the circuit can be simulated with a circuit simulator like
SPICE.

3.2 Models and Diagnoses
We start with the definition of a model. This is a very
broad definition (our approach is agnostic to the modeling
approach) - we say that a model is a function that computes
some set of prediction variables. These prediction variables



are observable from the viewpoint of diagnosis (i.e., they
contain sensor data), hence we call them OBS as is tradi-
tional in MBD [11]. For our model to be useful for diagnosis
and disambiguation, we distinguish two more special sub-
sets of variables: the set of component variables COMPS
and the set of command variables CMDS. Both COMPS
and CMDS are from Finite Domain Integers (FDI) and their
domains are typically small. This limitation is necessary for
our AI-based search algorithms to work but limits our ap-
proach to relatively abrupt failures and limits our capabili-
ties for graceful degradation and prognostics.

Definition 1 (System Model). A system model M , ⟨SD,
CMDS, COMPS, OBS⟩, is specified using a function SD
from two sets of Finite Domain Integer (FDI) variables
CMDS and COMPS, to a set of real-valued variables OBS.

In the above definition SD is a function that, when given
full assignments over CMDS and COMPS, can compute an
assignment for the variables in OBS. One can treat CMDS
and COMPS as parameters or function selectors. Notice
that the function should be specified in such a way so it
would result in a valid OBS-assignment for any CMDS and
COMPS instantiation. In MBD terminology SD is a strong-
fault model [12].

The COMPS variables are called component, health, or
assumable variables. The CMDS variables are command-
variables or user-modifiable inputs (there may be also in-
puts that the user cannot modify but they have no special
meaning for our algorithms). The COMPS-assignment we
call a health assignment. The CMDS-assignment we call
command-assignment.

We normally associate a component with one health vari-
able and, if applicable, a command variable. A resistor, for
example, is modeled only with a health variable, while a
switch has a command variable that specified the position
and a health variable that specifies if the switch is, for ex-
ample, stuck.

Each health variable has a nominal mode, and the health
assignment containing nominal modes only is called the
nominal health assignment. In our running example, the
nominal health assignment is ω⋆ = {V1 = nominal, I1 =
nominal,SW1 = nominal,R1 = nominal,⋯}. Note, that
even though the health variables are FDI, we usually use
symbols instead of numerals for readability. The represen-
tation in the implementation of the algorithms, of course,
uses small numbers.

Similarly, we have command assignments. There is al-
ways a default value for each command variable. For our
example in Fig. 1, the switches are normally closed, and the
default command assignment is γ = {SW1 = closed,SW2 =
closed}.

For the various health (and diagnosis) assignments that
we use in this paper we use indexes of the Greek letter ω
and for the command assignments we use γ. With all this
we can define a hypothetical diagnostic scenario in we can
“inject” a hypothetical health (fault) assignment ω⋆.

Definition 2 (Diagnostic Scenario). A diagnostic scenario
SCN, ⟨M , γ, t⋆, ω⋆, α⟩, is specified using a system model
M , an assignment ω⋆ to the health variables in COMPS at
time t⋆, and an assignment γ to the user-command variables
in CMDS.

What is new in the above definition is the use of the ob-
servation assignment α. We assume that α is a real vector

but keep the notation compatible with other AI papers where
the observation is a Boolean assignment [13].

In what follows we define diagnosis.
Definition 3 (Diagnosis). A diagnosis DIAG, ⟨M , ω, t⟩ is
defined as a probabilistic assignment ω to the variables in
COMPS at time t.

A diagnosis is very similar to a health assignment, except
that there is a probability for every literal. Let us say, that
in our running example, the two of the resistors are open-
circuited with the same probability of 0.25. The expression
for ω looks like this: ω = {Pr(R1 = ∞) = 0.25,Pr(R2 =
∞) = 0.25}.

In the definition of diagnostic scenario and diagnosis we
also have the time of the fault injection t⋆ and the time of
the diagnosis t. These are rarely used in our exposition
as we construct most of the diagnostic scenarios in such a
way as to have one fault injection and assume one diagno-
sis, which, if true (positive or negative), would have t > t⋆.
We will need t and t⋆, though, when we define and compute
the false-positive and false-negative scenario metrics.

Using the three definitions from above, we can essentially
“run” diagnosis and disambiguation (we will shortly make
the notion of disambiguation more precise). Clearly, the
goal of a diagnostic system would be, given a diagnostic
scenario, to compute a diagnosis ω that is close to ω⋆. Of
course, the diagnostic system cannot use the fault injection
ω⋆. The latter fault injection is only used while “training”
and evaluating the whole diagnostic system. Finally, we
need a function that will compute the “distance” between
the fault injection ω⋆ and the diagnosis ω. Such functions
are well-studied in diagnosis, reliability, and others, and are
called “metrics”.
Definition 4 (Diagnostic Metric). A diagnostic metric DM,
⟨F , SCN, DIAG⟩ is defined using a function F that maps
(t⋆, ω⋆, t, ω) into [0,∞).

The computation of metrics allows users to compare
the performance of various diagnostic and simulation ap-
proaches, etc. The whole task of diagnosis and disambigua-
tion can be cast as an optimization problem that aims at min-
imizing one or more metrics.

4 Diagnosis
In what follows we show an algorithmic framework for
computing diagnoses from models and scenarios. This is
the first step in a two-step process in which (1) a diagnostics
algorithm computes a diagnosis given a model and an ob-
servation and (2) if the diagnosis is ambiguous, i.e., one or
more components are said to be in a certain fault state with
probability different from one, then a disambiguation algo-
rithm is used to decrease the diagnostic uncertainty. This
section concerns the first step (diagnosis) while the next sec-
tion describes the disambiguation process which involves
the computation and application of new commands.

4.1 Overview
The basic idea of the LYDIA-NG diagnostic library (shown
in Fig. 2) is to perform multiple simulations for various hy-
pothesized health states of the plant. The output of these
multiple simulations is then processed and combined into
single diagnostic output.

The LYDIA-NG diagnostic library consists of the follow-
ing building blocks:



Figure 2: Overview of the LYDIA-NG diagnostic method

Generator of Diagnostic Assumptions: A diagnostic as-
sumption is a set of hypothetical assignments for the
health or fault state of each component in the sys-
tem. The “all nominal” diagnostic assumption assigns
healthy status to each component. LYDIA-NG allows
one nominal and one or more faulty states per compo-
nent.

Simulation Engine: Given a diagnostic assumption,
LYDIA-NG can construct a simulation model of the
system. This simulation model consists of equations.
By solving this system of equations LYDIA-NG com-
putes values for one or more observable variables. The
values of these observable variables is also referred to
as a prediction.

Residual Analysis Engine: A prediction is compared to
the sensor data by a residual analysis engine. This
engine combines the individual discrepancies in each
sensor data/predicted variable pair to produce a single
real value that indicates how close is the prediction of
the simulation engine to the sensor data obtained from
the plant. A simulation that results in all predicted val-
ues coincide with the measured ones will result in the
residual being zero. The data structure containing pre-
dictions, their corresponding sensor data and the com-
puted residual is called a diagnostic candidate or sim-
ply candidate.

Candidate Selection Algorithm: Not all candidates gen-
erated by the residual analysis engine are used for com-
puting the final system health. The candidate selec-
tion algorithm discards each candidate whose residual
is larger than the residual of the “all nominal” candi-
date.

System State Estimation Algorithm: LYDIA-NG uses
the set of candidates that is computed by the candidate
selection algorithm to compute an estimate for the
health of each component. This is done by the system
state estimation algorithm. Finally, LYDIA-NG com-
putes RCoF by choosing the components with highest
probability of failure.

4.2 Algorithm
Algorithm 1 shows the top-level diagnostic process. The
inputs to Alg. 1 are a model and a scenario, and the result is
a diagnosis.

At the hear of Alg. 1 is the use of simulation. Algo-
rithm 1 supports a large variety of simulation methods that
may or may not use time as an independent variable. In
the setup described in this paper we have used SPICE in
combination with a constraint propagation solver. The latter
we have used for sensor values, complex components such
as mixed analog-digital electronics and other parts of the
model where it is difficult or inappropriate to model with
SPICE. The only requirement toward the simulation en-
gine is to predict a number of variables whose types can be
mapped to LYDIA-NG and to be relatively fast (the compu-
tational performance of LYDIA-NG will not be thoroughly
discussed in this paper which emphasizes the application of
LYDIA-NG to a space model).

Algorithm 1 Diagnosis framework
1: function DIAGNOSE(SCN) returns a diagnosis

inputs: SCN, diagnostic scenario
local variables: h, FDI vector, health assignment

p, real vector, prediction
Ω, a set of diagnostic candidates
DIAG, diagnosis, result

2: while h← NEXTHEALTHASSIGNMENT() do
3: p← SIMULATE(M , γ,h)
4: r ← COMPUTERESIDUAL(p, α)
5: Ω← Ω ∪ ⟨h, r⟩
6: end while
7: DIAG← COMBINECANDIDATES(Ω)
8: return DIAG
9: end function

The basic idea of Alg. 1 is to simulate for various health
assignments and to compare the predictions with the ob-
served sensor data (i.e., telemetry). There are several impor-
tant aspects of this algorithms that ultimately affect the di-
agnostic accuracy as measured by various performance met-
rics (see Sec. 6.4).

The first algorithmic property that determines many of
the diagnostic performances is the order in which health-
assignments are generated. In Alg. 1 this is implemented in
the NEXTHEALTHASSIGNMENT function. The latter sub-
routine also determines when to stop the search and should
be properly parametrized depending on the model and the
user requirements. In the standard LYDIA-NG diagnostic
library we provide the following diagnostic search policies:
Breadth-First Search (BFS): This policy first generates

the nominal health assignment, then single-faults,
double-faults, etc.

Depth-First Search (DFS): This search policy starts with
the nominal health assignment, then adds a single-
fault, continues with a double fault including the first,
and so on, until all components are failed. After the
all-faulty assignment is generated, the algorithm back-
tracks one step and generates a sibling assignment
and continues traversing down and backtracking in the
same manner until no more backtracking is possible.

Backwards Greedy Stochastic Search (BGSS): In this
mode, the search start from the all-faulty assignment.



A random health variable is then flipped and the flip is
retained iff the flip leads to a decrease in the residual.
The order of health variables is arbitrary. As the whole
search process is stochastic, it needs to be run multiple
iterations in order to achieve the desired completeness.
A formal description of this method for Boolean
circuit models can be found in [13].

Each simulation produces what we call a candidate: a
set of predicted values for a given health-assignment. The
second important property of Alg. 1 is the comparison and
ordering of the diagnostic candidates. This is done by map-
ping the predicted and observed variables into a single real-
number, called residual. The residual computation is dis-
cussed in what follows.

4.3 Residual Generation
Residual generation functions in LYDIA-NG bear resem-
blance to loss functions in decision theory.

Definition 5 (Residual Function). A residual function R
maps a prediction vector p and an observation vector α into
a real-number [0;∞).

We next show two straightforward residual generation
functions.

Squared Residuals:

Rsq(OBS,p, α) = ∑
v∈OBS

W (v) [p(v) − α(v)]2 (1)

where W (v) is a weight-value associated with sensor
v, p(v) is the value of variable v in the prediction as-
signment p and α(v) is the value of the observable
variable v.

Absolute Residuals:

Rabs(OBS,p, α) = ∑
v∈OBS

W (v) ∣p(v) − α(v)∣ (2)

whereW (v), p(v) and α(v) are used in the same way
as in Eq. 1.

A disadvantage of the squared residuals function Rsq is
that it adds a lot weight to outliers. In decision theory, the
absolute loss function that corresponds to the Rabs function
is discontinuous. The latter, however, is not a problem for
the algorithms described in this paper and we prefer Rabs

over Rsq.

4.4 Computation of Component Failure
Probabilities

Consider the circuit shown in Fig. 1 and a scenarioα = {I1 =
1.19}. This scenario corresponds to one of the resistors be-
ing open-circuited or one of the switches being stuck-open.
Table 1 shows applying Eq. 2 for the predictions simulated
from the nominal and all single-fault health assignments.
The rows of Table 1 are sorted in order of an increasing
residual value. In this table (and below) we abbreviate a
stuck switch as S and an open-circuit resistor mode as OC.

The COMBINECANDIDATES subroutine from Alg. 1 uses
a table similar to the one shown in Table 1. It retains only
the predictions with residuals smaller than the residual of
the nominal prediction. The reason for that is that the nom-
inal prediction is the only one that has a special meaning in
LYDIA-NG and leads to a “landmark” residual, i.e., LYDIA-
NG does not attempt to differentiate amongst the various

Table 1: Single-fault residuals for the circuit shown in Fig. 1
and an observation simulated from a single open-circuited
resistor

V1 I1 SW1 SW2 R1 R2 faults Rabs

− − S − − − 1 0.0006
− − − S − − 1 0.0006
− − − − OC − 1 0.0006
− − − − − OC 1 0.0006
− − − − − − 0 1.1758
F − − − − − 1 1.1888
− F − − − − 1 1.1888
− − − − SC − 1 79.3402
− − − − − SC 1 79.3402

fault-mode predictions. As a result, in our running exam-
ple, only the first four rows of Table 1 are considered when
calculating the final fault-probabilities.

The second step of COMBINECANDIDATES is to convert
Rabs in the interval [0; 1] where Rnorm = 0 for the nominal
prediction and Rnorm = 1 for a fault prediction that gives
Rabs = 0. Applying this on Table 1 gives us Table 2.

Table 2: Normalized single-fault residuals from Table 1 that
are smaller than the nominal residual

SW1 SW2 R1 R2 Rnorm

S − − − 1
− S − − 1
− − OC − 1
− − − OC 1

Finally, what remains to be done is to normalize the right-
most column of Table 2 so it sums up to one and marginal-
ize the probability of failure in each column. For the small
circuit we are analyzing this results in {Pr(SW1 = S) =
0.25,Pr(SW2 = S) = 0.25,Pr(R1 = OC) = 0.25,Pr(R2 =
OC) = 0.25}. The fact that all probabilities are 0.25 means
that Alg. 1 cannot determine unambiguously which compo-
nent is the faulty one. In this case this is due to the fact
that there is only one sensor, i.e., the unambiguity is due to
sensor placement and circuit design.

One way to reduce this ambiguity is to change the posi-
tion of SW1 and/or SW2. In the next section we devise an
algorithmic framework that works for any circuit or model
that can be diagnosed in the LYDIA-NG framework.

5 Disambiguation
An ambiguous scenario is when LYDIA-NG cannot be cer-
tain if a component is failing or not (we will shortly dis-
cuss a more precise notion of uncertainty). The reasons for
that can be in the design of the system itself, due to model
approximation, or due to the choice of the diagnostic algo-
rithm. Consider, for example, the simple electrical circuit
shown in Fig. 1. Due to the fact that there is a single current
sensor in the design (I1), an open-circuit resistor R1 cannot
be distinguished from an open-circuit R2, SW1, or SW2. A
set of modes that cannot be distinguished from each other
is called an ambiguity group. Sometimes ambiguous results



are due to the observation (consider the case in which there
is no sensor data at all). In other cases, ambiguity is a re-
sult of the artifact design as shown in Fig. 1. In these cases
no diagnostic algorithm can return a unique diagnosis. Fi-
nally, the diagnosability can be influenced by modeling ap-
proximation. Consider an alternative of the circuit shown
in Fig. 1, in which R1 is 22 Ω but it is modeled as a 20 Ω
resistor.

Ambiguity groups appear only for certain plant configu-
rations (positions of switches SW1 and SW2 in our exam-
ple). Let us consider the case in which both SW1 and SW2

in Fig. 1 are closed and the only malfunctioning component
is R1, where R1 is open-circuited. As a result of the fault,
the current sensor I1 shows −1.2 A1 instead of the nomi-
nal −2.4 A. The most informed diagnosis in this case is that
both R1 and R2 are equally-likely to be open-circuited. An
equivalent statement is that given the single measurement of
I1 = −1.2 A, both R1 and R2 fail with probability of 0.5 (to
keep the example short we do not allow SW1 and SW2 to
fail, LYDIA, however, allows switches to fail).

A LYDIA-NG diagnosis contains a discrete probability
for each component mode in the system. Each component
typically specifies a single nominal mode and one or more
fault modes. Consider, for example, R1 that can be either in
nominal mode (R1 = 20), or in short-circuited mode (R1 =
0), or in open-circuited mode (R1 = ∞). We will use the
following notation for the health of R1:

Pr(R1 = 20) = 0.5,
Pr(R1 = 0) = 0,
Pr(R1 =∞) = 0.5

(3)

For brevity, we omit the zero-probability assignments:

Pr(R1 = 20) = 0.5,Pr(R1 =∞) = 0.5. (4)

In (4), the diagnostic engine does not really know if R1 is
healthy or open-circuited. A much more preferred situation
from the diagnostic viewpoint would be:

Pr(R1 =∞) = 1 (5)

In (5) the diagnostic engine has determined a unique mode
(R1 is open-circuited), and there is no uncertainty in the di-
agnosis. We can derive a formula that gives a quantitative
metric for the uncertainty in the health assignment of a com-
ponent C:

U(C) = ∑
x∈C⋆

−Pr(C = x) lg∣C⋆∣Pr(C = x), (6)

where Pr(C = x) denotes the probability of a component
C being in a healthy/faulty state x and C⋆ is the set of all
possible component states of C.

We can compute the uncertainty of a diagnostic assign-
ment for the whole system as the average uncertainty of all
of its components:

Ū = 1

∣COMPS∣ ∑
C∈COMPS

U(C), (7)

where COMPS is the set of all components in the system.
If we treat each component C as a random variable (the

sum of the probabilities of all component modes is one),

1The current is negative so this document matches the LYDIA-
NG implementation of the example and the passive sign conven-
tion [14].

then Eq. (6) represents the average component health en-
tropy and Eq. (7) represents the average health entropy of
the whole system. The values U(C) and Ū are always in
the interval [0; 1] where 0 is the lowest uncertainty, and 1 is
the highest, i.e., the probability for each component state is
the same if and only if the entropy equals one.

Given an uncertain diagnosis, the LYDIA-NG disam-
biguation library computes new plant-configuration assign-
ment (user-modifiable inputs) that optimally reduces the av-
erage uncertainty in the next diagnosis. The next (future) di-
agnosis, however, depends on a future observation which is
unknown. To estimate this future observation, LYDIA-NG
uses the existing (current) diagnosis.

Recall that a diagnosis is a probability assignment over
the component states in the system. For a simulation, how-
ever, we need a deterministic assignment over the set of
assumable (health) variables. For the simulation of a di-
agnosis, LYDIA-NG averages the observations obtained by
failing all components that appear in the diagnosis with non-
zero probability. This is a weighted average and the weight
for each simulation is the probability of failure as it appears
in the diagnosis. By doing this, LYDIA-NG uses all infor-
mation in a diagnosis for estimating a future observation.

Consider the circuit in Fig. 1 and a diagnosis

Pr(R1 =∞) = 0.5,Pr(R2 =∞) = 0.5 (8)

The LYDIA-NG disambiguation algorithm first simulates
the circuit with R1 open-circuited, R2 nominal, SW1

closed, and SW2 open. The predicted value for I1 is 0 A. A
simulation with R1 nominal, R2 open-circuited, SW1 open,
and SW2 closed, results in the same predicted future obser-
vation of 0 A for I1. As both simulated failures appear in
(8) with the same probability the next predicted observation
is I1 = 0 A. What remains for LYDIA-NG is to apply (6)
to the diagnoses computed with the two observations just
described. The first diagnosis is:

Pr(R1 =∞) = 1 (9)

while the second diagnosis is:

Pr(R2 =∞) = 1 (10)

Plugging (9) or (10) in (7) would maximize Ū which is intu-
itively correct as opening either SW1 or SW2 would result
in current flowing through one resistor only, and hence dis-
ambiguate the resulting diagnosis. LYDIA-NG presents this
kind of reasoning to the user who is advised to open SW1

or SW2 if she wants to obtain more diagnostic information
than the one contained in (8).

A concluding remark is that by changing the positions of
SW1 and SW2 we obtain a virtual (current) sensor that can
be used for more precise determination of the health state of
resistors R1 and R2.

LYDIA-NG can disambiguate in the case of non-
intermittent failures only. Disambiguation of intermittent
behavior is significantly more complicated and subject of
future research. A subject of future development is also
the automated computation of worst-case diagnosability of
a model.

Algorithm 2 shows the LYDIA-NG disambiguation
framework. It uses Alg. 1 as a diagnostic oracle.

The main loop of Alg. 2 (1) simulates the effects of a
number of command assignments, (2) computes diagnosis
and (3) takes the command assignment that results in a min-
imal diagnostic entropy.



Algorithm 2 Disambiguation framework
1: function DISAMBIGUATE(SCN) returns a command

inputs: SCN, diagnostic scenario
local variables: DIAG, diagnosis

d, component health variable
h, FDI vector, health assignment
α, real vector, observation
γ′, γmin, command assignments
H,Hmin, reals, entropy

2: DIAG← DIAGNOSE(SCN)
3: while γ′ ← NEXTCOMMAND(γ) do
4: H ← 0
5: for all {d ∈ DIAG ∶ Pr(d) > 0} do
6: h← MAKEHEALTHASSIGNMENT(d)
7: α ← SIMULATE(DM, γ,h)
8: DIAG′ ← DIAGNOSE(⟨M,γ′, t, ω⋆, α⟩)
9: H ←H + ENTROPY(DIAG′)Pr(d)

10: end for
11: if H <Hmin then
12: Hmin ←H
13: γmin ← γ′
14: end if
15: end while
16: return γmin

17: end function

When describing Alg. 2 we use current (diagnosis, obser-
vation, etc.) to denote the state before a new user command
has been applied and predicted to denote observation, diag-
noses, entropies, etc., after the new user command has been
executed.

Algorithm 2 starts by computing the current diagnosis
(line 2). The subroutine NEXTCOMMAND iterates over the
space of all possible user commands. Notice that it takes
as an argument the current state of all command variables
and returns a new vector γ′ that reflects the chosen com-
mand. If, for example, γ = {SW1 = closed,SW2 = closed},
executing the user command “open switch one”, results in
γ′ = {SW1 = open,SW2 = closed}.

Depending on how NEXTCOMMAND is implemented, the
following command generation strategies have practical sig-
nificance:
Breadth-First Search (BFS): First, all possible changes to

one command variable are considered, then all possible
pairs, triples, etc. of command variables are generated.
Clearly, this strategy quickly causes a combinational
blow-up, hence for larger systems, it is feasible to con-
sider only changes to single command variables.

Greedy Stochastic Search (GSS): This policy starts with
a single change to a command variable. If this change
leads to an entropy reduction (compared to the entropy
of the current diagnosis), then this changed is preserved
and a second command variable is changed. The pro-
cess is repeated until changes to single command vari-
ables lead to a reduction in the predicted entropy. The
order in which changes are applied is random, hence,
the algorithm is stochastic. The disadvantage of this
method is that it is incomplete, i.e., certain combina-
tions of changes to command variables will not be con-
sidered given limited computational resources.

There are more command generation policies such as a fully
stochastic generation of commands. This is hardly of practi-

cal interest as usually there is some cumulative cost related
to combining individual changes to command variables into
a multi-variable command and fully stochastic selection of
changes would hardly result in minimal entropy.

One can also implement Backward Greedy Stochastic
Search (BGSS). In this command generation strategy, the
algorithm starts with changing all possible command vari-
ables in γ′ and greedily flips the individual variables to their
original values in γ. Again, a command variable flip should
be accepted only if it reduces the predicted entropy. This
strategy is suitable only for a class of devices that are con-
figurable through multi-variable command changes.

In line 5 of Alg. 2 we iterate over each failing compo-
nent d in the current diagnosis as computed by Alg. 1 in
line 2 (each component that fails with non-zero probability).
MAKEHEALTHASSIGNMENT (line 6) is an auxiliary func-
tion that returns a health assignment that has d failing with
its respective failure mode and all other component variables
nominal. The current command assignment γ and the health
assignment h are supplied to the simulator that is invoked in
line 7. This is the same simulation engine that is used in
Alg. 1. Finally, the ENTROPY function in line 9 is the im-
plementation of Eq. 7.

The conditional in lines 11 - 14 select the user command
γ′ that minimizes the expected entropy H . This is collected
int the γmin variable which is returned in line 16. In the real
world, the first k-lowest entropy γ′ commands are presented
to the user so she can choose the one that best matches the
situation.

6 Experiments
In this section we describe experiments with the LYDIA-
NG framework in the scope of the GENIUS project. To
make our study specific we have modeled the EPS of GOCE
but the results are valid to a wider-class of satellite power-
supply systems.

6.1 Exprimental Test-Bed
The experimental test-bed for LYDIA-NG is shown in
Fig. 3. We have used the ESA-ESOC SIMSAT simula-
tor framework to generate the failure scenarios for LYDIA-
NG. GOCE uses the SCOS-2000 SCADA system and the
LYDIA-NG diagnostic library interfaces it. The SIMSAT
can be connected to SCOS-2000 via the Ground Mod-
els (a SIMSAT library that provides telemetry packet mar-
shalling).

LYDIA-NG

SI
M

SA
T

G
ro

un
d 

M
od

el
s

SC
O

S-
20

00

Plug-In

GENIUS

Test-Bed

G
EN

IU
S Fram

ew
ork

Figure 3: Overview of the GENIUS test-bed



6.2 GOCE EPS Model
From the viewpoint of modeling, the GOCE EPS has three
major subsystems:

Solar Array Panels and Electronics: There are six body-
mounted solar array panels. The panels are connected
to the solar panel electronics and their voltage and cur-
rent sensors are reported in the telemetry. Each solar
array panel is connected to a Power Conditioning Unit
(PCU). Each PCU contains, in addition to input and
output voltage and current sensors, a Maximum Power
Point Tracker (MPPT), and a solar array regulator. The
PCU electronics is double and triple redundant. We
have not considered scenarios leading to ambiguous di-
agnoses with faulty components in the PCU units.

Battery and Battery Control: The battery is connected to
the main bus through a pair of switches that are not
used in normal operation. There are redundant charg-
ing and discharging voltage and current sensors. The
battery charge control electronics has the task of keep-
ing the battery charged while extending its life.

Power Distribution Network and Thermal Control:
There are two times eight heater groups (nominal
and redundant), each group consisting of six heaters.
Each heater can be individually controlled via a
Transistor SWitch (TSW). The positions of the TSWs
are reported in the telemetry. The heater groups are
connected to the main bus through Latch Current
Limiters (LCLs). There is a current sensor per heater
group.

The LYDIA-NG model is ≈ 1000 lines and the number of
variables is typically large for an MBD application (see Ta-
ble 3).

Table 3: GOCE EPS model properties

Model Property Value

observable variables 186
health variables 289
command variables 132
internal variables 790
total number of variables 1397

6.3 Diagnostic Scenarios
Table 4 shows a summary of the GENIUS diagnostic sce-
narios with which we have tested LYDIA-NG.

We have arbitrarily chosen heater group A8 for
experimentation—the results do not change if we choose an-
other group or a combination of groups.

TST1: There is no fault injection during this scenario. This
scenario is used to check the diagnostic algorithms for
spurious diagnoses (false positive scenarios).

TST2: In this scenario a single PCU current sensor is
failed. The fault-mode is out-of-bound value. Such a
fault can be identified unambiguously by a diagnostic
algorithm.

TST3: This scenario injects a single open-circuited heater
in the first heater group. Due to the fact that there is
only a single current-sensor per heater group and that

Table 4: GOCE EPS fault scenarios

Name Class Faults

TST1 nominal −
TST2 single-fault current sensor
TST3 single-fault, ambiguous heater
TST4 continuation of TST3 heater
TST5 multiple-faults current sen-

sors
TST6 multiple-faults, related current sensor

and a switch
TST7 multiple-faults, ambiguous solar arrays

and heaters
TST8 multiple-faults, degradation solar arrays
TST9 multiple-faults, accumulation solar array

and a voltage
sensor

TST10 slow degradation heater
TST11 intemittent switch

there are heaters of the same type (resistance), this fault
cannot be identified unambiguously by any diagnostic
algorithm.

TST4: This is a continuation of TST3. After the first injec-
tion, the user is assumed to send a telecommand that
switches-off one heater. This user-command now be-
comes part of the scenario. As a result a diagnostic
algorithm should be able to produce a less-ambiguous
diagnosis after the user-command.

TST5: In this scenario we inject simultaneously two cur-
rent sensor faults of the same type as in TST2.

TST6: In this scenario we inject a double-fault. The two
faults are a current sensor in the heater group and a
switch. The two faults are topologically close, i.e., they
are in the same heater group.

TST7: This is a quadruple-fault where the faults are rel-
atively far from each other in the device topology.
The scenario is highly-unlikely and is used for “stress-
testing” the performance of the diagnostic and disam-
biguation algorithms. In this scenario we have two of
the solar arrays suffer from the loss of multiple solar
cells and two open-circuited heaters.

TST8: This is a double fault degradation, i.e., two of the
solar-panels expose loss of power.

TST9: This scenario starts with degrading the capacity of
a single solar-panel and then adds a failed voltage sen-
sor. The individual faults accumulate and they are close
topologically (i.e., one may have led to the other).

TST10: This scenario is not implemented at the time of the
writing of this paper. It is included for planned future
work on graceful-degradation, prognostics and other
areas related to MBD. The idea is to have a heater that
changes its resistance due to aging. At this moment the
authors have not studied the exact physics of failure of
such faults.

TST11: This is a scenario in which faults appear and disap-
pear in consecutive measurements. The injected fault
is a faulty LCL switch.



6.4 Metrics of Diagnostic Performance
The metrics for evaluating Diagnostic Algorithm (DA) per-
formance depend on the particular use of the diagnostic sys-
tem, the users involved, and their objectives.

Several institutions and organizations have proposed met-
rics that measure diagnostic performance [15; 16; 17; 18;
19; 20; 21]. Among those, the SAE’s “Health and Usage
Monitoring Metrics” [15] defines probability of detection
and probability of false alarms as key indices for evaluating
diagnostic algorithm performance.

In [19], the performance metrics are defined separately
for detection, and isolation. For detection, the metrics in-
clude thresholds, accuracy, reliability, sensitivity to load,
speed, or noise, and stability. The isolation metrics include
the detection metrics, but also include measures for discrim-
ination and repeatability.

In LYDIA-NG, we make a distinction between detec-
tion, isolation, and computational performance and high-
light metrics for each category. In general several other
classes of metrics are possible, including cost/utility met-
rics, effort metrics (in building systems for example) and
also other categories such as fault identification and fault
recovery metrics. The expectation is that as LYDIA-NG
evolves a comprehensive list of desired metric classes and
categories will be developed to aid framework users in
choosing the performance criteria they want to measure.

Table 5: Metrics summary

Metric Name Class

Mfd fault detection time detection
Mfn false negative scenario detection
Mfp false positive scenario detection
Mda scenario detection accuracy detection
Mfi fault isolation time isolation
Merr classification errors isolation
Mia isolation accuracy isolation
Ment diagnostic uncertainty isolation
Mcpu CPU load computational
Mmem memory load computational

The ten metrics we have defined are summarized in Ta-
ble 5. All metrics are real numbers (Mmem is an exception
as it measures a discrete value - the number of bytes that
are used). Several metrics (Mfn, Mfp, Mda, Merr, Mia, and
Mutl) are defined in such a way as to produce a number in
the interval [0; 1]. We show that isolation accuracy is dual
to classification errors and, as Mia does not contain any ad-
ditional information to Merr, LYDIA-NG does not compute
it.

Detection Metrics
The distinction between detection and isolation has practi-
cal importance. A DA may announce a fault detection be-
fore it knows the root cause of failure (for example, a detec-
tion announcement can be based solely on surpassing sen-
sor threshold values). A detection signal cannot be retracted
by a DA while it is legal to retract an isolation announce-
ment when more faults are expected (at the of writing of
this LYDIA-NG does not support retractions but such fea-
ture may be added in the future). The detection metrics in-
clude:

Fault Detection Time: The fault detection time (the reac-
tion time for a diagnostic engine to detect an anomaly)
is directly measured as:

Mfd = t − t⋆ (11)

The fault detection time is reported in milliseconds and
is computed only for non-nominal scenarios for which
a DA computes a diagnosis at least once.

False Negative Scenario: The false negative scenario met-
ric measures whether a fault is missed by a diagnostic
algorithm and is defined as:

Mfn = { 1, if t =∞
0, otherwise

(12)

Mfn of a nominal scenario is defined to be zero.

False Positive Scenario: The false positive scenario met-
ric penalizes DAs which announce spurious diagnoses
and is defined as:

Mfp = { 1, if t < t⋆
0, otherwise

(13)

where t⋆ = ∞ for nominal scenarios (i.e., scenarios
during which no fault is injected).
Note that the above two metrics (Mfn and Mfp) are
computed for each scenario and their computation is
based on the times of injecting and announcing the
fault. We also have false negative and false positive
components in the context of individual diagnostic can-
didates (recall that a DA sends a set of diagnostic can-
didates at isolation time) which we will discuss later in
this document.

Scenario Detection Accuracy: The scenario detection ac-
curacy metric is computed from Mfn and Mfp:

Mda = 1 −max(Mfn,Mfp) (14)

Mda is 1 if the scenario is true positive or true nega-
tive and 0 otherwise (equivalently, Mda = 0 if Mfn = 1
or Mfp = 1, and Mda = 1 otherwise). Mda splits all
scenarios into “true” and “false”. Incorrect scenarios
are further classified into false positive (Mfp) and false
negative (Mfn). Correct scenarios are true positive if
there are injected faults and true negative otherwise
(the latter separation into true positives and true neg-
atives is rarely of practical importance).

Isolation Metrics
Consider a fault injection ω. We construct the set of failing
components ω̄ by taking the identifiers of the failing compo-
nents only. In other words, we discard the precise fault state
of a failing component, and only retain the information that
this component is in an off-nominal state.

We can do something similar from a diagnosis ω⋆. Of
course, in this case we will take only components that are
failing with non-zero probability. We denote the set of fail-
ing components in a diagnosis ω as ω̄.

Notation-wise, we put a bar above a fault injection ω⋆ or
a diagnosis ω to take two sets of failing components - the
fault ω̄⋆ and the candidate ω̄. We can now use those two to
explain false positives and false negatives in the context of
multiple-fault isolation accuracy metrics.

Both the candidate ω̄ and the injected fault ω̄⋆ are sets
of components. The intersection of those two sets are the



properly diagnosed components. The false positives are the
components that have been considered faulty but are not ac-
tually faulty. The false negatives are the components that
have been considered healthy but are actually faulty. Fig-
ure 4 shows how ω̄ and ω̄⋆ partition all components into
four sets.

positives

ω̄ ∩ ω̄?

true

negatives

COMPS \ {ω̄ ∪ ω̄?}
true

COMPSω̄? (injected fault)

ω̄
(c

a
n
d
id

a
te

)

ω̄? \ ω̄
false

negatives

ω̄ \ ω̄?

false
positives

Figure 4: The diagnostic candidate ω̄ and the injected fault
ω̄⋆ partition COMPS into four sets

False positives and false negatives in this context relate
to individual candidates, i.e., misclassified components in a
single diagnostic candidate. There are also scenario-based
false negative and false positive metrics (defined earlier in
this section), which summarize whole scenarios and are not
to be confused with the false positives and false negatives in
the context of isolation metrics.

For brevity, in the remaining of this document we use the
notation in Table 6 for the Fig. 4 sets.

Table 6: Notation for sizes of some frequently used sets

Var. Set Description

f ∣COMPS∣ all components
n ∣ω̄⋆ ∖ ω̄∣ false negatives
N ∣COMPS ∖ ω̄∣ the set of healthy compo-

nents from the viewpoint of
the DA

n̄ ∣ω̄ ∖ ω̄⋆∣ false positives
N̄ ∣ω̄∣ the set of faulty components

from the viewpoint of the
DA

Based on the representation given in Figure 4, the mean-
ing of false positives and false negatives can be interpreted
differently depending on what the diagnosis results are sup-
porting (abort decisions, ground support, fault-adaptive con-
trol, etc.). Researchers have proposed different methods to
assess the meaning of isolation accuracy and its practical
and economical implications.

[16] introduced metrics based on the receiving operat-
ing characteristic (ROC) analysis [18], which illustrates the
trade-off space between the probability of false alarm and
the probability of detection for different signal to noise ra-
tio (SNR) levels. The method is used to test the relative
accuracy of diagnostic systems based on different threshold
settings. Later, they also proposed a combined metric [17]
that accounts for consequential event costs including missed

detection, false alarms, and misdiagnosis. Another widely
used metric for isolation accuracy is the Kappa Coefficient
[15]. It is based on the construction of a confusion matrix
that summarizes diagnostic results produced by a reasoner
over a number of test/use cases. In essence, the Kappa Co-
efficient measures the ability of an algorithm to discriminate
among many fault candidates.

In this document, we take a simplistic approach and as-
sume that false positives and false negatives have an equal
cost for the diagnostic task and operations. The isolation
metrics include:

We can now return to using the original ω⋆ and ω, i.e., we
don’t need their set equivalents ω̄⋆ and ω̄.
Classification Error: Given a fault injection ω⋆ and a di-

agnosis ω, the classification error metric is defined as:

Merr = ∑
C∈COMPS

∣I(C = x) −Pr(C = x)∣ (15)

where

I(C = x) = { 1, if (C = x) ∈ ω
0, otherwise

(16)

In Eq. (15), ∣I(C = x) −Pr(C = x)∣ denotes the sym-
metric difference of the ω and ω⋆ assignments and
can be interpreted as the probabilistic equivalent of the
number of misclassified components.
We can define a new metric, the isolation accuracy
Mia:

Mia = ∑
C∈COMPS

∣1 − I(C = x) −Pr(C ≠ x)∣ (17)

One can easily see that Mia and Merr are duals, i.e.:
Mia

f
+ Merr

f
= 1 (18)

The isolation accuracy metric Mia originates in the au-
tomotive industry [15]. The Aerospace Recommended
Practice (ARP) computes the closely related probabil-
ity of correct classification in the following way. For
each component we compute the square confusion ma-
trix. The probability of correct classification is the sum
of the main diagonal divided by the total number of
classifications (see the referenced ARP [15] for details
and examples).

Diagnostic Uncertainty: Unlike Merr and Mia, the diag-
nostic uncertainty metric Ment is computed from the
diagnosis ω only. As a result, the diagnostic uncer-
tainty is not suitable for being used on its own, but
should be used in combination with Mia and Merr.
We start by defining the diagnostic uncertainty of a
component C ∈ COMPS:

U(C) = ∑
x∈C⋆

−Pr(C = x) lg∣C⋆∣Pr(C = x), (19)

where Pr(C = x) denotes the probability of a compo-
nent C being in a healthy/faulty state x and C⋆ is the
set of all possible component states of C.
We can compute the uncertainty of a diagnostic assign-
ment for the whole system as the average uncertainty
of all of its components:

Ment =
1

f
∑

C∈COMPS

U(C), (20)

where COMPS is the set of all components in the sys-
tem.



Fault Isolation Time: Consider a fault injection ω⋆ and a
sequence of diagnoses ω1, ω2, . . . , ωn. The fault isola-
tion time Mfi is defined as:

Mfi = t′ − t⋆ (21)

where t′ equals the first time ti (i = 1,2, . . . , n) in
which Ment of ωi is zero.
The fault isolation time is reported in milliseconds.

6.5 Results
Table 7 shows the main results of our experiments. As the
full isolation requires a manual step (the selection of a user-
command amongst the first lowest-entropy ones) and the
simulation of the effect of the user-command we have shown
only the first disambiguation step which leads to a lower di-
agnostic uncertainty.

All experiments were performed on a modern Pentium
desktop (3 GHz), however, the implementation of the
LYDIA-NG algorithms was single threaded. Further, we
have used simulation databases, to improve the speed of the
simulation process. The offline time for computing a simu-
lation database is less than two hours. After that, the online
step of looking-up the database and computing the residual
takes less than 100 ms. These results show that LYDIA-NG
can be used for real-time monitoring and diagnosis, process-
ing telemetry data as it arrives, typically at a rate of 2 Hz.

The GOCE experiments showed no false-positive and
false-negative scenarios, hence the diagnostic accuracy was
one (see columns Mfn, Mfp, and Mda in Table 7). The clas-
sification errors and the isolation accuracy metrics are close
to the optimal for the model, although the worst-case values
of Merr and Mia are not computed (i.e., the optimal values
for the worst-case observation). The latter would be useful
during the design stage and we plan to implement them in
future work.

The relatively large memory consumption (511 MiB in all
scenarios) is due to the use of non-compressed simulation
databases. This is not a problem for ground (as opposed to
on-board) as RAM for this kind of application is nowadays
very cheap.

The fault isolation time Mfi is a worst-case estimation
that includes the computation of disambiguation only. We
assume that the user always chooses a command that does
not lead to switching-off the faulty component (a user ac-
tion that would masquerade the fault leads to a predicted
uncertainty of zero and would be proposed by Alg. 2). Con-
sidering TST3, for example, the Mfi estimation is done as-
suming that the user switches-off all heater switches in the
group before reaching the faulty one.

7 Conclusions
In this paper we have reported on the GENIUS project. The
purpose of the project was to bring MBD one step closer
to the real-world in assisting operators in satellite ground
control.

In this project we have simulated telemetry that is close
to real-world. We have defined a number of scenarios in
which we have injected multiple, ambiguous, intermittent
faults and we have defined a number of performance metrics
with which we have tested diagnosis and disambiguation.
Our approach is promising in that it delivers good scenario
diagnostic accuracy, small number of classification errors.

Further, the disambiguation approach we propose can re-
duce the isolation accuracy and assist operators in decision
making and execution of (sequences of) telecommands.

References
[1] S. Narasimhan and L. Brownston, “Hyde–a general

framework for stochastic and hybrid model-based di-
agnosis,” in Proc. 18th International Workshop on
Principles of Diagnosis (DX’07), Nashville, USA,
2007, pp. 162–169.

[2] M. Daigle, I. Roychoudhury, G. Biswas, X. Kout-
soukos, A. Patterson-Hine, and S. Poll, “A compre-
hensive diagnosis methodology for complex hybrid
systems: A case study on spacecraft power distribu-
tion systems,” Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, vol. 40,
no. 5, pp. 917–931, 2010.

[3] A. Zheng, I. Rish, and A. Beygelzimer, “Efficient test
selection in active diagnosis via entropy approxima-
tion,” arXiv preprint arXiv:1207.1418, 2012.

[4] S. Wu, Q. Yan, Y. Ren, and S. Guo, “Efficient probe
prediction algorithm for fault diagnosis in computer
networks,” in Wireless Communications, Networking
and Mobile Computing (WiCOM), 2011 7th Interna-
tional Conference on. IEEE, 2011, pp. 1–4.

[5] Y. Qiao, X. Qiu, L. Cheng, and L. Meng, “A method-
ology used to optimize probe selection for fault lo-
calization,” in Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE. IEEE, 2010, pp. 1–
5.

[6] G. Bellala, S. Bhavnani, and C. Scott, “Active diag-
nosis under persistent noise with unknown noise dis-
tribution: A rank-based approach,” in Proceedings of
the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), 2011.

[7] D. Tolpin and S. Shimony, “Rational value of infor-
mation estimation for measurement selection,” arXiv
preprint arXiv:1003.5305, 2010.

[8] T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia,
L. Kuhn, J. de Kleer, A. van Gemund, and A. Feldman,
“First international diagnosis competition - DXC’09,”
in Proc. DX’09, 2009, pp. 383–396.

[9] S. Poll, A. Patterson-Hine, J. Camisa, D. Gar-
cia, D. Hall, C. Lee, O. Mengshoel, C. Neukom,
D. Nishikawa, J. Ossenfort, A. Sweet, S. Yen-
tus, I. Roychoudhury, M. Daigle, G. Biswas, and
X. Koutsoukos, “Advanced diagnostics and prognos-
tics testbed,” in Proc. DX’07, 2007, pp. 178–185.

[10] A. Feldman, T. Kurtoglu, S. Narasimhan, S. Poll,
D. Garcia, J. de Kleer, L. Kuhn, and A. van Gemund,
“Empirical evaluation of diagnostic algorithm per-
formance using a generic framework,” International
Journal of Prognostics and Health Management, pp.
1–28, 2010.

[11] A. Feldman and A. van Gemund, “A two-step hi-
erarchical algorithm for model-based diagnosis,” in
Proceedings of the Twenty-First National Conference
on Artificial Intelligence (AAAI’06), Boston, Mas-
sachusetts, USA, July 2006.



Table 7: Diagnostic metrics from the GOCE EPS experiments

Name Mfd Mfn Mfp Mda Mfi Merr Mia Ment Mcpu Mmem

[ms] [ms] [s] [ms] [MiB]

TST1 − 0 0 1 − 0 289 0 114 511
TST2 88 0 0 1 − 0 289 0 88 511
TST3 88 0 0 1 505 1.45 287.55 0.004 88 511
TST4 89 0 0 1 − 0 289 0 89 511
TST5 90 0 0 1 − 1 288 0.0035 90 511
TST6 90 0 0 1 101 1 288 0.0016 90 511
TST7 93 0 0 1 505 3.96 285.04 0.0047 93 511
TST8 94 0 0 1 − 1 288 0.0022 94 511
TST9 84 0 0 1 − 1 288 0 84 511
TST10 − − − − − − − − − −
TST11 77 0 0 1 505 1.83 287.17 0.0025 77 511

[12] J. de Kleer, A. Mackworth, and R. Reiter, “Character-
izing diagnoses and systems,” Artificial Intelligence,
vol. 56, no. 2-3, pp. 197–222, 1992.

[13] A. Feldman, G. Provan, and A. van Gemund, “Approx-
imate model-based diagnosis using greedy stochastic
search,” Journal of Artificial Intelligence Research,
vol. 38, pp. 371–413, 2010.

[14] G. W. Roberts and A. S. Sedra, SPICE, ser. The Ox-
ford Series in Electrical and Computer Engineering.
Oxford University Press, 1996.

[15] S. A. P. S. H. M. Committee E-32, “Health and usage
monitoring metrics, monitoring the monitor,” Tech.
Rep. ARP5783, February 2008.

[16] H. R. DePold, J. Siegel, and J. Hull, “Metrics for eval-
uating the accuracy of diagnostic fault detection sys-
tems,” in Proc. TURBO’04, 2004.

[17] H. R. DePold, R. Rajamani, W. H. Morrison, and K. R.
Pattipati, “A unified metric for fault detection and iso-
lation in engines,” in Proc. TURBO’06, 2006.

[18] C. E. Metz, “Basic principles of ROC analysis,” Nu-
clear Medicine, vol. 8, no. 4, pp. 283–298, 1978.

[19] R. F. Orsagh, M. J. Roemer, C. J. Savage, and
M. Lebold, “Development of performance and effec-
tiveness metrics for gas turbine diagnostic technolo-
gies,” in Proc. AEROCONF’02, vol. 6, 2002, pp.
2825–2834.

[20] M. Roemer, J. Dzakowic, R. F. Orsagh, C. S. Byington,
and G. Vachtsevanos, “Validation and verification of
prognostic health management technologies,” in Proc.
AEROCONF’05, 2005, pp. 3941–3947.

[21] M. Bartyś, R. Patton, M. Syfert, S. de las Heras, and
J. Quevedo, “Introduction to the DAMADICS actuator
FDI benchmark study,” Control Engineering Practice,
vol. 14, pp. 577–596, 2006.


