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Abstract

Fault diagnosis of analogue systems is a challeng-
ing task and no fully automated solution exists.
We address the task of diagnosing hard faults in
linear analogue systems. We develop an algo-
rithm that dynamically reduces the size of the sim-
ulation model during diagnostics inference. We
compare our simulation approach to the approach
used by industry and academia and empirically
demonstrate that our algorithm provides signifi-
cant speedups on a benchmark of analogue cir-
cuits with regular and semi-random topologies.
We apply our algorithm to the model of a real-
world satellite and demonstrate 40 times speedup.
We measure a significant performance increase
(200 times) for a configuration of the diagnostic
search that achieves higher diagnostic accuracy,
optimizing a trade-off in computational complex-
ity versus diagnostic accuracy. Our framework
can be directly applied to any system for which
the bond graph energy formulation applies and
the model optimization part of the algorithm can
be used to improve the computational complexity
and numerical stability of a large class of numer-
ical solvers that require steady-state simulation as
a part of their convergence process.

1 Introduction
Fault diagnosis of analogue systems is an important prob-
lem, given their prevalence in synthetic and natural do-
mains. The most heavily-studied domain is that of analogue
circuits, and enormous research has been directed towards
the testing and diagnosis of electronic devices [Bandler and
Salama, 1985].

We can separate three sub-tasks of analogue fault diag-
nosis: detecting faulty behaviors, isolating the faulty com-
ponents, and determining the parameters of the faulty com-
ponents. The success of this process depends on accurate
definitions of fault models. We can classify fault models for
analogue systems into two categories: hard (catastrophic)
faults and soft (parametric) faults. A hard (catastrophic)
fault model characterizes when the system exhibits signifi-
cant (and often abrupt) behavioral changes. For example, a
hard fault in a circuit occurs when the terminals of a compo-
nent become stuck-open or stuck-short. A parametric fault
model characterizes when there exist deviations of compo-

nent parameters that result in performance beyond accept-
able limits.

No fully-automatic method exists for multiple-fault diag-
nosis of analogue systems, even for the heavily-studied do-
main of circuit diagnosis. This paper proposes a method
for diagnosis of hard multiple-fault instances in analogue
systems. We adopt a model for analogue systems based on
a graphical topological structure, in which nodes represent
measurement points and edges the components. We propose
an approach for diagnosing hard faults that performs topo-
logical reductions of the model during runtime inference,
which results in significant speedups compared to existing
approaches that do not employ such reductions [Korzybski,
2008].

The contributions of this paper are as follows: (1) we in-
troduce a simulation-based search framework for diagnosis
of analogue systems; (2) we design an optimization method
that significantly improves the simulation performance in
the case of failures; (3) we apply this approach to the domain
of analogue electrical circuits; (4) we design a benchmark
of analogue electrical circuits that represents a large class of
circuit topologies; (5) we propose an analytical model that
predicts speedups based on system topology; and (6) we ex-
perimentally show that the proposed optimization method
improves the diagnostic performance as predicted by the an-
alytical model.

2 Related Work
Analog systems diagnosis is a well-studied area, and a va-
riety of approaches have been developed, based on meth-
ods such as off-line numerical test-generation [Duhamel and
Rault, 1979], bond graph approaches [Samantaray et al.,
2006], machine learning [Aminian and Aminian, 2000], and
AI-based methods [Dague et al., 1992]. The domain of ana-
logue systems that has received the most attention is that of
fault diagnosis of analog circuits, e.g., [Bandler and Salama,
1985]. Although much progress has been made, most prior
work addresses only single-fault cases. Achievements to-
wards automatic multiple-fault diagnosis are documented
in, i.a., [Korzybski, 2008]; however, many aspects of the
problem are still open, and no fully-automatic method ex-
ists for multiple-fault generic analog circuit diagnosis.

Researchers have studied dynamic discontinuities in bond
graphs [Mosterman and Biswas, 1996]. This paper comple-
ments the approach of Mosterman and Biswas by provid-
ing an algorithmic framework for dealing with structural (or
parametric) discontinuities. Our approach is fully applica-
ble to bond graphs [Mosterman and Biswas, 1999].



This work differs from the circuit topology-modification
algorithms based on qualitative circuit models (e.g., [Hotz
et al., 1997]). In this qualitative circuit work, a qualitative
structural model of a circuit is transformed (using star-delta
transformations and series-parallel reductions) to generate
a structure more suitable for fault simulation. The original
approach, the SDSP method [Hotz et al., 1997], was lim-
ited to resistive networks that consist of one voltage source
and an unlimited number of resistors, but was generalized in
[Snooke and Lee, 2013]. The circuit topology transforma-
tions in the SDSP method are performed prior to any infer-
ence (as opposed to during the course of diagnostics infer-
ence in our approach), and do not cover the cases addressed
in our approach, in which extremal values (0 or ∞) may
occur in voltage or current. Further, the class of transfor-
mations, because they are for a different purpose, are quite
different than the transformations employed in this article.

3 Concepts and Definitions
In what follows we present the basic concepts of circuit di-
agnosis.

3.1 System Description
A system consists of an inter-connected set of components.
For example, in a circuit a component can be a resistor or ca-
pacitor, and connections are wires. We represent our model
in terms of two parts, the connection topology, and the com-
ponent equations. We represent the topology of a system
using a graph G.

Definition 1 (Topology Graph). Given a model M with
components COMPS = {c1, c2,⋯, cn}, and component
connections (junctions) Z = {z1, z2,⋯, zl}, where compo-
nent ci occurs between junctions zj , zk, we represent the
topology graph G(V,E) of M such that the vertices V cor-
respond to connections in M and edges E correspond to
components in M .

Edges in G are also labeled with the type of the corre-
sponding components and their parameters. We represent
the equations as follows. We represent a generic linear ana-
logue system in terms of a relation between effort x⃗ and flow
z⃗ vectors of variables, using T x⃗ = z⃗, where T is an n ×m
matrix. For example, for circuits x⃗ ∈ Rn is an (unknown)
nodal voltage vector, and z⃗ ∈ Rm is a measurable current-
source vector.

We adopt a simulation approach called Modified Nodal
Analysis (MNA) [Ho et al., 1975]. This approach con-
verts the component equations, together with the system
topology, into a matrix representation that incorporates both
equations and topology using the Kirchoff Current Law
(KCL), in order to enable efficient simulation. Due to space
constraints, we refer the reader to [Ho et al., 1975] for a
full description of MNA; here we focus on optimizations of
MNA when using this approach for hard-fault diagnostics
inference.

As an example of problem formulation using MNA, con-
sider a simple circuit, as shown in Figure 1. In the cir-
cuit we identify 3 nodes at which we measure voltage, de-
noted va, vb, vc. This circuit has 2 voltage sources, V1, V2,
and two current flows iv1, iv2. The 3 nodes and 2 voltage
sources, (n = 3, m = 2), result in a system with system
equation T x⃗ = z⃗ and characteristic nodal matrix T of size

(n +m) × (n +m). The resulting matrix is shown in equa-
tion 1. For example, the first of 5 possible equations de-
scribing the system is obtained by applying KCL at va, i.e.,
1
R1
va − iv1 = 0. This is captured by the first row of the T

matrix, and the first element of the x and z vectors.
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Figure 1: Simple circuit example
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From our general system equation T x⃗ = z⃗, our example
maps to equation 1 as follows. The T matrix denotes only
known quantities; in our circuit example it denotes the val-
ues of the passive elements (the resistors). The vector x⃗
denotes the unknown quantities (efforts and flows); for our
circuit these correspond to node voltages and the currents
through the independent voltage sources. The vector z⃗ de-
notes only known quantities (efforts and flows).

3.2 Model-Based Diagnosis
We will adopt a mode-based representation, i.e., we assume
that the system can operate in a set Ω of modes, which can
consist of nominal or faulty operating conditions. Given a
system that consists of a discrete set of components with
a corresponding set of health parameters COMPS, a mode
ω ∈ Ω is an assignment to all variables in COMPS.

Further, for each mode we assume that we can specify a
distinct set of equations. Hence, for each ω ∈ Ω we specify
an equation set SDω given by Tωx⃗ω = z⃗ω .
Definition 2 (Diagnostic Model). Given a system that con-
sists of a discrete set of components with a correspond-
ing set of health parameters COMPS, a diagnostic model
M = ⟨SD, COMPS⟩ is specified using a function SD =
⋃ω∈Ω SDω .

In this article, we are typically given the flow vector z⃗
and must compute the effort vector via x⃗ω = T −1

ω z⃗ω , a pro-
cess we call simulation of x⃗ω . Since SD is linear, we can
simulate efficiently.

Given an observation α⃗, we estimate the mode (i.e., solve
a diagnostic problem) by computing an optimal solution of
a parameter estimation problem where the parameters are
discrete and the problem is split in two parts: simulation
and residual analysis.

In real-world applications, straightforward simulation
function (from definition 2) is not sufficient to adequately



solve the diagnostic problem. This is because models are
imprecise, there is sensor noise, health parameters are dis-
crete, etc. Instead, we compute a difference between α⃗ and
a simulation ˆ⃗z (using the residual function of Definition 3),
and then identify the mode that minimises this function.
Definition 3 (Residual Function). Given two m-
dimensional real vectors ˆ⃗z, α⃗ ∈ Rm, a residual function
R ∶ {ˆ⃗z, α⃗} ↦ R(ˆ⃗z, α⃗) maps ˆ⃗z and α⃗ into the real interval
[0;∞).
For the residual function R we typically use some statisti-
cal estimator. In this paper we use the absolute residuals
function:

Rabs(ˆ⃗z, α⃗) =
m

∑
i=1

wi ∣ẑi − αi∣ (2)

where ẑi and αi are the ith components of the ˆ⃗z and α⃗ vec-
tors, respectively, and wi are weights (parameters).
Definition 4 (Health Estimation Problem). Given a diag-
nostic model SD and a residual function R, the health es-
timation problem is to compute an assignment ωmin to all
variables in COMPS such that:

ωmin = argmin
ω

R(SDω, α⃗)

Solving the above health estimation problem, while main-
taining computational efficiency is the main goal of our
framework.

4 Algorithms
In what follows we outline an algorithm for solving the
problem given in definition 4. Our algorithm consists of
(1) a search algorithm that iterates over a subspace of the
possible combinations of discrete parameter values, (2) a
model optimization algorithm that improves the model com-
plexity, and (3) simulation and residual algorithms that
rank the candidates and compute the optimal parameter as-
signment. The primary goal of this section is to show
how model optimization (2) significantly improves the per-
formance of the simulation step (3).

Algorithm 1 provides a generic search method for solv-
ing the parameter estimation problem in definition 4. The
idea is to search the space of all possible health parame-
ter combinations. This space is exponential in the number
of components (health variables) and normally the search is
limited to a subset of all combinations. Examples of such
subsets are all k-fault combinations or the assignment sets
generated by a greedy search [Feldman et al., 2010].

Algorithm 1 starts by assuming the user-defined default
parameter assignment h = {} which, in diagnostic con-
text, represents the all-okay status of the system. Successive
health assignments are generated by the NEXTHEALTHAS-
SIGNMENT subroutine.

Depending on the implementation of NEXTHEALTHAS-
SIGNMENT, algorithm 1 can perform different types of
search such as breadth-first, depth-first, iterative deepening,
greedy (in this case NEXTHEALTHASSIGNMENT uses the
r parameter), random, and many others. Which policy is
optimal depends, i.a., on the simulation and residual func-
tions (see def. 3) and the topology of the model. Choosing a
search policy (or a combination of such) is a topic of its own
and is not discussed in this paper. Our main focus is how the
complexity of the simulation function SIMULATESYSTEM

Algorithm 1: DIAGNOSISSEARCH(M,α)
Input: M , model
Input: α, observation
Result: ω, diagnosis
Local variable: h, health assignment, initially {}

Local variable: p⃗, simulation vector
Local variables: r, rmin, residuals, r, rmin ∈ [0;∞)

1 r ←∞

2 repeat
3 p⃗← SIMULATESYSTEM(MAKENETLIST(M,h))
4 r ← COMPUTERESIDUAL(p⃗, α)
5 if r < rmin then
6 ω ← h
7 r ← rmin

8 until h← NEXTHEALTHASSIGNMENT(h, r) ≠ ∅;
9 return ω

in line 3 affects the overall complexity of the optimization
algorithm.

The function MAKENETLIST takes a set of component
models, a topology, and a parameter guess h and generates
a netlist. This netlist is fed to the simulation function SIM-
ULATESYSTEM. The netlist represents a system of linear
equations and the simulation subroutine, described in the
section that follows, uses linear algebra tools to compute
the unknown simulation variables.

Algorithm 2 outlines a circuit simulator that supports only
linear elements: dissipative elements (resistors), effort (volt-
age) and flow (current) sources. Our approach is similar to
the one used in SPICE [Nagel and Pederson, 1973]. The im-
plementation of Algorithm 2 uses the Modified Nodal Anal-
ysis (MNA) of Ho et al. [1975], generating nodal matrices
of size n×nwhere n is the number of nets in the input netlist
L.

Algorithm 2: SIMULATESYSTEM(L)
Input: L, netlist
Result: z⃗, voltage vector
Local variable: G, graph
Local variable: N , nodal matrix
Local variable: j⃗, current vector

1 G← MAKEGRAPH(L)

2 G← OPTIMIZEGRAPH(G)

3 N ← MAKENODALMATRIX(G)

4 j⃗ ← MAKECURRENTVECTOR(G)

5 z⃗ ← N−1j⃗
6 return z⃗

Algorithm 2 starts by converting the input netlist L into
a graph G. This is achieved by calling the MAKEGRAPH
subroutine. The implementation of MAKEGRAPH is not
discussed in this text because a netlist, describing a linear
circuit, is already almost a graph, and constructing G from
L is straightforward.

As is customary in SPICE, elements in L are represented
as edges in G and nets in L are nodes in G. Edges in G
are labeled with the type of the corresponding elements and
their parameters.

The matrix N is directly generated from the graph G
as described by Kielkowski [1994, p. 18]. The MNA ap-
proach, however, does not tolerate short-circuits as they lead



to infinite conductances. Further, open-circuits may cause
singular matrices. To avoid these problems, even modern
solvers replace short-circuits with small and open-circuits
with large resistances. In this paper, resistances close to
zero and large resistances are denoted as ε and E , respec-
tively. While replacing zeroes and infinity with small and
large numbers is less of a problem for a single simulation, it
increases significantly the overall complexity when solving
thousands of times for various combinations of parameter
values.

The time complexity of algorithm 2 is dominated by the
matrix inversion in line 4. The matrix inversion operation is
as complex as matrix multiplication [Cormen et al., 2001,
p. 757] and its complexity is O(n3) or O(n2.807) when us-
ing the Strassen algorithm1 [Press et al., 2002, pp. 105–107]
where the matrix N is of size n × n.

The most important addition to algorithm 2 is the OP-
TIMIZEGRAPH call in line 2. The purpose of OPTIMIZE-
GRAPH is to reduce the number of nodes inG, thus reducing
the size of the nodal matrix N .

The task of algorithm 3 is to reduce the complexity of
simulation by removing components with specific parame-
ters from the model. Algorithm 3 has two main parts: first
all components that are faulty (for example open- and short-
circuited resistors) are removed (lines 3–10) and, second,
only those circuits that are closed through a voltage source
are retained (lines 12–24).

Algorithm 3: OPTIMIZEGRAPH(G)
Input: G = ⟨V,E⟩, graph
Result: G, optimized graph
Local variables: v, vertex, e, edge
Local variables: S, edge stack, P , set of edges
Local variable: stop, Boolean flag

1 repeat
2 stop ← true
3 foreach e ∈ E ∶ ISDISSIPATIVEELEMENT(e) do
4 if Ω(e) < ε ∨ SRC(e) = DST(e) then
5 V ← V ∖ DST(e)
6 E ← E ∖ e
7 RECONNECT(E, SRC(e),DST(e))
8 stop ← false

9 if Ω(e) =∞ then
10 E ← E ∖ e

11 until stop = false;
12 PUSH(s,EFFORTSOURCE(E))

13 while e← POP(s) ≠ ∅ do
14 PUSH(s,ADJACENTEDGES(G,e))
15 P ← P ∪ e

16 repeat
17 stop ← true
18 foreach e ∈ E do
19 if ∣e∣ < 2 or e /∈ P then
20 V ← V ∖ DST(e)
21 E ← E ∖ e
22 stop ← false

23 until stop = false;
24 REMOVEORPHANEDVERTEXES(V,E)

25 return G = ⟨V,E⟩

1There exist faster methods for sparse matrices but they are of
no practical significance for our algorithms.

The auxiliary function ISDISSIPATIVEELEMENT(e) re-
turns true if and only if its argument e is a dissipative el-
ement edge (resistor in the electrical domain). The func-
tion Ω(e) returns the resistance of e. The functions SRC(e)
and DST(e) return the two respective vertexes that are con-
nected to an edge e. Notice that it is customary that the rep-
resentation of the simulation graph V is directed, although
the orientation of the edges produces no difference in the
simulation results.

While edges that represent open-circuited resistors can be
simply removed from the graph (lines 9–10), after remov-
ing a short-circuited resistors (lines 4–8), the adjacent wires
have to be reconnected. This is done by the RECONNECT
subroutine and the process is illustrated in figure 2. As re-
moving a short-circuit can cause another short-circuit (see
again fig. 2), the component removal loop in lines 3–10 has
to be repeated until no more removals are performed. This
is achieved by using the stop flag.

R4 = 0

N1

N2 N6

N5

N4N3

N1

N6

N5

N4

R2 = 0

R3

R1 R5

R6

R5

R6
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R3

Figure 2: Removing the short-circuited resistors R2 and R4

in the left graph makes nodes N2 and N3 unnecessary. To
preserve the circuit we have to disconnect R1 from N2 and
to connect it to N4. Similarly, both ends of R3 have to be
connected to N4. At this moment, N4 shorts R3 and R3 can
be removed.

The second part of algorithm 3 (lines 12–22), removes
all circuit elements that are not doubly-connected to a volt-
age source. This process first performs a Depth-First Search
(DFS) on the graph G [Sedgewick, 2002, pp. 81–99]. In our
case, the DFS starts from all voltage sources. The subrou-
tine EFFORTSOURCE returns all edges that are connected to
a positive terminal of an effort (voltage) source. These edges
are added to the stack s in line 12. The result of the DFS is
that all edges that can be reached from a voltage sources are
added to the set of edges P . The DFS uses the function AD-
JACENTEDGES to generate all edges that are neighbors of
an edge e.

The loop in lines 16–23 removes all edges that are not in
P , i.e., they are not connected to a voltage source. This loop
also removes all hanging edges. The condition for a hanging
edge is in line 19. The expression ∣e∣ denotes the sum of the
degrees of the two vertexes incident to e. Similarly to the
first part of the algorithm, the loop in lines 18–22 is repeated
until no further truncation of the graph is possible.

Finally, all orphaned nodes (zero-degree nodes) are re-
moved by the helper subroutine REMOVEORPHANEDVER-
TEXES.

The worst-case time complexity of algorithm 3 is
O(∣E∣2), i.e., it is polynomial in the number of edges. Some
time complexity in algorithm 3 can be traded for memory,
thus achieving near linear performance. The outer loops in
lines 1–11 and 16–23, for example, can be removed at the
cost of managing data structures that keep track of all graph
nodes that have to be merged and all orphaned or hanging
paths.



5 Average-Case Analysis
This section examines the type of complexity reduction that
is possible for a typical model.

Definition 5 (Topology Graph). Given a model M with
components COMPS = {c1, c2, . . . , cn}, and junctions Z =
{z1, z2, . . . , zl}, where component ci occurs between junc-
tions zj , zk, we map M into a graph G(V,E) of vertices
V and edges E by mapping each component to an edge and
each junction to a vertex.

Parallel edges are allowed. The size of a graph G(V,E)
is denoted2 as ∣G(V,E)∣ where ∣G(V,E)∣ = ∣E∣. The size
of G(V,E) is essential to the algorithmic performance of
algorithm 3 as it is equal to the size of the nodal matrix.

Definition 6 (Contraction Operators). Given a graph
G(V,E) and an edge e = {v,w}, the graph G′(V ′,E′) =
G(V,E) ¯ e is such that E′ = E/ {e ∪ F}, V ′ = V /v, F
is the set of all edges that are parallel to {v,w}, and each
edge {x, v} ∈ E such that x ≠ w is replaced with an edge
{x,w} ∈ E′.

Given a graph G(V,E) and an edge e, the graph
G′(V ′,E′) = G(V,E)  e is such that E′ = E/e, V ′ =
V / {W ∪ v} where v is incident to e and W is the set of
singly connected vertices in E/v.

We have chosen the symbols¯ and to visually resem-
ble the set exclusion operator / as the two contraction oper-
ators lead to a decrease in the size of G. The graph contrac-
tion ratio is:

ρ =
∑
e∈E

[∣G(V,E)¯ e∣ + ∣G(V,E) e∣]

2 ∣G(V,E)∣2
(3)

The variable ρ in eq. 3 adds-up the effect of applying¯ and
 to each edge in E. Note that ρ ∈ [0; 1]. The denominator
in eq. 3 is simply ∣G(V,E)∣-times the number of edges in
G(V,E). The coefficient 2 in the denominator is because
we have two contraction operators: ¯ and . In the empty
graph, ρ = 1 by definition, i.e., no contraction is possible. In
graphs with a single loop, ρ = 0, i.e., the sum of the sizes of
all contracted graphs is zero.

Lemma 1. The following two statements are true:

1. The total graph contraction for a serial graphG(V,E)
with edges E = {{z1, z2} ,{z2, z3} , . . . ,{zn−1, zn}} is
ρ = 1

2
.

2. The total graph contraction for a par-
allel graph G(V,E) with edges E =
{{z1, z2} ,{z1, z2} , . . . ,{z1, z2}} is ρ = 1

2
.

z1 zn−1 znz2 z3

e1 e2 · · · en−1

(a) serial

z1

z2

e1 · · ·e2 en

(b) parallel

Figure 3: Boundary graph topologies

2This is an abuse of notation. Bollobás [1998], for example,
uses ∣G∣ to measure the order of G(V,E), while the graph size is
denoted as e(G).

Proof (Sketch). We show the correctness of statement 1 and
statement 2 can be proven in a simmilary way.

In a graph G(V,E) with serial topology, there are ex-
actly G(V,E) = ∣E∣ = n edges as illustrated in figure 3(a).
Choose any edge e. Applying ¯ to e, removes only e from
the original graph G(V,E) and results in:

∑
e∈E

∣G(V,E)¯ e∣ = n (n − 1) (4)

On the other hand, applying to e, regardless of the choice
of e results in a singly-connected graph:

∑
e∈E

∣G(V,E)¯ e∣ = n (5)

Adding eq. 4 to eq. 5 gives us ρ = n+n(n−1)
2n2 which simplifies

to ρ = 1
2

.

We next continue with analyzing the effect of algorithm 3
on random graphs. The subject of this analysis are ran-
dom graphs, of the Erdős and Rényi type [1960], well be-
low the phase transition, where the components are serially
connected. Due to serially connecting all components, we
refer to these graphs as “semi-random”.

We denote the average graph degree of a graph G(V,E)
as d̄ where d̄ = 2∣E∣/∣V ∣.
Theorem 1. The total graph contraction for a serially-
connected semi-random graph G(V,E) is ρ = kd̄.

Proof (Sketch). We decompose G(V,E) into two graphs:
G(V,E′) and G(V,E′′) where E′ is the set of random
edges and G(V,E′′) is a serially connected graph such as
the one shown in figure 3(a). This decomposition is possi-
ble due to the way G(V,E) is constructed. Let G(V,E′′)
consists of C components (the computation of C is shown
in the paper of Erdős and Rényi [1960]). We can now show
that the overall reduction ρ = k1ρ

′ + k2ρ
′′ will be the aver-

age of reducingG(V,E′) andG(V,E′′). From lemma 1 we
have that ρ′′ = 1

2
. Finally, both k1 and k2 are proportional

to d̄, hence ρ = k′1d̄ρ′ + k′′2 d̄ρ′′. As there is no dependency
between k′1, k′′1 , ρ′, and ρ′′ (ρ′′ depends on C only), then
we can conclude that ρ is proportional to the average graph
degree.

Although there is an analytical method to obtain ρ for
semi-random graphs, we compute it experimentally which
also shows the absolute improvement in computational com-
plexity due to the symbolic preprocessing. This we do in the
section that follows next.

6 Experiments
We have run a big number of experiments to characterize
the performance of the algorithms described in section 4.

Algorithms 1–3 are implemented as a part of the (deleted
for anonymity) diagnostic framework. The implementa-
tion is in C++ and uses the BOOST C++ library collection
[Schäling, 2011].

6.1 Benchmark
Unlike with digital circuits [Brglez and Fujiwara, 1985]
and to the best of our knowledge, there is no linear SPICE
benchmark, so we have generated the circuits that we need

Table 1 shows a number of regular circuits. These topolo-
gies can be scaled by setting a variableN , producing a range
of circuit sizes.



Name N variables ∣COMPS∣
N-SERIAL 3–202 11–608 3–202
N-PARALLEL 3–202 9–407 3–202
N-MIXED 3–102 18–513 6–204
N-MESH 3–12 48–723 18–288
N-TREE 3–5 57–6253 27–3125

Table 1: Circuit benchmark

All benchmark circuits have a single voltage source that
cannot fail. The N-SERIAL circuits, shown in figure 4(a),
consist of N resistors connected in series. Similarly, the N-
PARALLEL circuits in figure 4(b) consist ofN resistors con-
nected in parallel. The N-MIXED topology is a combination
of N-SERIAL and N-PARALLEL as shown in figure 4(c).
The N-MESH circuits consist of 2 ×N2 resistors arranged
in a rectangular grid as shown in figure 4(d). Finally, the N-
TREE circuits are complete N -ary trees of depth N . They
are shown in figure 4(e).
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Figure 4: Scalable circuits with regular topology used for
performance analysis

For N-SERIAL, d̄ = 2. For N-PARALLEL, d̄ = N + 1.
For N-MIXED, d̄ = (4N + 2)/(N + 2) which approaches
4 for larger N . The N-MESH circuits have average graph
degree d̄ = (4N2 + 2)/(N2 + 2) which approaches 4 when
increasing N even faster than N-MIXED.

In addition to the regular circuits from the preceding sec-
tion we have created 6 370 semi-random circuits. These
circuits are generated by algorithm that is an adaptation of
the random graph algorithm proposed by Sedgewick [2002,
p. 42]. The reason for the modification is that the original
algorithm produced multiple graph components for sparse
graphs.

We generate random graphs by specifying the vertex/edge
ratio r. The relation between the semi-random graph gen-
eration paramter r and the average graph density d̄ is given
by ∣E∣ = rN + C − 1 where C is the number of connected
components in G. From the fact that ∣V ∣ = N it follows that
d̄ = 2Nr +C − 1/N . For our experiments we have chosen
0.1 ≤ r ≤ 0.4 which translates to 2.06 ≤ d̄ ≤ 2.9.

6.2 Results
The performance gain for N-PARALLEL is the same as for
N-SERIAL. Not surprisingly, algorithm 3 helps only a little
in the connected topologies of figure 4(c) and figure 4(d).
For these two dense topologies, we have measured a perfor-
mance gain of at most 9%. This is because a single faulty

component decreases the size of the nodal matrix by one.
The most significant benchmark performance gain due to

algorithm 3 is for k-fault simulations where k > 1. The per-
formance of the diagnostic search decreases exponentially
with k, except when k approachesN because then the nodal
matrix is almost degenerate, hence easier to decompose. On
the other hand, multiple faults increase the frequency with
which significant parts of the nodal graphs are pruned. For
example, when k = 2, an open-circuit close to the voltage
source in N-SERIAL makes N simulations use a 2 × 2 ma-
trix instead of the normal N ×N .
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Figure 5: 11-SERIAL k-fault performance

The performance gain due to k-fault simulations is shown
in figure 5. In order to simulate k-fault combinations, we
have chosen a small N = 11. The performance gain in-
creases for larger k and reaches a factor of 5.12 for k = 12.

Figure 6 shows the average algorithm complexity with
random circuits. On the x-axis we have the number of nodes
in the topology graph. The y-axis is the number of edges
coefficient r. The z-axis shows the ratio of the time of the
diagnosis with and without algorithm 3.
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Figure 6: Performance gain for random circuits

Figure 6 shows that the performance gain due to algo-
rithm 3 does not depend on the circuit size, i.e., it is almost
constant. What determines the performance gain is the edge
density. For r = 0.1 we have almost twice speed improve-
ment and it decreases to ≈ 1.25 for r = 0.4. The performance
gain is bounded from below by the performance gain of the
N-SERIAL topology due to the nature of random graph gen-
eration algorithm.

The linear correlation coefficient of the speedup shown in
figure 6 and the average graph degree is −0.89 which val-
idates the analysis in section 5. The negative sign in the
correlation is due to the fact that r defined as the number of
graph vertices per edge while d̄ is reciprocal to r, i.e., d̄ is
defined as the number of edges per graph vertex.



We have a modeled the electrical power system of a real-
world satellite [deleted, 1900]. It consists of, a.o, 96 heating
elements (modeled as resistors) and 112 switches (modeled
as resistors whose resistor changes as a result of a user-
supplied command). The large number of switching com-
ponents and the designed cold-redundancy leads to a large
number of normally open-circuit or short-circuit elements
at any given time. As a result, algorithm 3 leads to a per-
formance speedup factor of at-least 38.9, and that is for the
single fault assumption. For the double-fault assumption we
have a performance gain of 194 times.

7 Conclusions
In this paper we study the advantages of preprocessing the
simulation model for steady-state analysis in diagnosis. The
speedup due to pruning of parametrized components that
cause discontinuity in the model depends on the topology
of the model and we have established that throughout ex-
tensive experimentation on a benchmark of circuits. Our
method does not decrease the diagnostic accuracy.

We observe most computational savings in real-world cir-
cuits where, due to standard redundancy for fault-tolerance,
there are many unpowered and shorted sub-circuits that
can be pruned. We also observe that the computational
performance increases for higher k when considering k-
combination of faults.
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