
Learning Diagnosis Models Using Variable-Fidelity
Component Model Libraries ?

Alexander Feldman ∗ Gregory Provan ∗∗ Rui Abreu ∗ Johan de Kleer ∗

∗ PARC Inc., Palo Alto, CA 94304, USA
(e-mail: {afeldman,dekleer,rui}@parc.com)

∗∗ Department of Computer Science, University College Cork, Cork, Ireland
(e-mail: g.provan@cs.ucc.ie).

Abstract: System models that are used in model-based diagnosis are often composed of components
drawn from component libraries. In these component libraries, there may be multiple systems of
equations per component (component implementations). For example, a component may be modeled as
a non-linear system (high-fidelity model), linear system, and a qualitative system (low-fidelity model).
Choosing the right component model for system diagnosis is a difficult task and requires a search in the
space of all possible component type combinations. In this paper we propose a method that automates
this task and computes a system model that optimizes a set of diagnostic metrics in a set of diagnostic
scenarios. Initial experimental results show that having linear models of some of the components in
a system preserves the diagnostic accuracy and isolation time while, at the same time, improves the
computational complexity and numerical stability.

1. INTRODUCTION

Model-based diagnosis (de Kleer and Williams, 1987) uses sys-
tem models and sensor data to compute diagnostic hypotheses.
These hypotheses have a range of applications such as decision-
making (Feldman et al., 2013), repair, reconfiguration, trou-
bleshooting, testing, and others. While providing many bene-
fits, model-based diagnosis is expensive due to the need to ob-
tain/construct good system models. To amortize this high mod-
eling cost, researchers develop and use component libraries.

A component may have several representations in a component
library. For example, a NAND-gate may be modeled as a sys-
tem of non-linear equations that govern the analogue electrical
laws of the gate, or its linear approximation or with the sim-
ple Boolean expression o ↔ ¬(i1 ∧ i2). Although one may
postulate that the best choice for a component model is the
one that most accurately represents the physics (in the case of
the NAND-gate, this would be the analogue electrical model),
experiments show that the result of this choice is sometimes
hard to predict and is dependent on the diagnostic context.

In this article we propose the novel approach of performing
diagnostics inference using component model libraries con-
sisting of multiple models of differing fidelity. We present an
approach to automatically compose a global diagnosis model
from different types of sub-models from a library, such that the
model maximizes a given score metric over a set of diagnosis
test cases. We use a test-set of diagnostic scenarios for learn-
ing the optimal system model, where the test-set is artificially
generated (e.g., by simulation) and contains a representative set
of likely faults. The algorithm we propose chooses component
models that optimize some (weighted) diagnostic metrics such
as diagnostic accuracy (which is dual of classification errors),
isolation time, or computational complexity (Feldman et al.,
2010). The output of the algorithm is a system model that can
be later used for on-line diagnosis.
? Supported by SFI grant 12/RC/2289.

To illustrate the usability of our algorithm, consider a diagnostic
model of a crane. The model would contain parts such as elec-
trical motors and drives and a Programmable Logic Controller
(PLC). Non-linear electromechanical-models are most appro-
priate choice for the moving parts, however modeling the PLC
with non-linear equations would result in a suboptimal diagno-
sis due to high complexity. Further, high simulation accuracy
does not necessarily translate to high diagnostic accuracy. The
algorithm we propose would run a few diagnostic scenarios and
then would discard the high-fidelity PLC model and instead use
the computationally simpler Boolean/qualitative/state-machine
components. By doing this, the algorithm optimizes the diag-
nostic performance of an MBD solver on a set of diagnostic
test cases.

Our contributions are as follows. We describe an algorithm
for learning models with components of variable fidelity. We
illustrate our algorithm on a multiple-tank dynamic system
benchmark, consisting of multiple tanks connected with valves.
We show that the algorithm that we propose is capable of
designing models that result in non-intuitive trade-offs during
diagnosis.

2. RELATED WORK

This work bears some relation to the use of ensembles in
learning. An ensemble method is a supervised learning-based
approach to discover which combination of model has the
best predictive power (Kuncheva and Whitaker, 2003). Model
ensemble methods have been applied in disciplines ranging
from statistics to AI (e.g., (Breiman, 1996; Wolpert, 1992)), and
it has been shown that an ensemble is often more accurate than
any single model in the ensemble (Maclin and Opitz, 2011).

The motivation behind using a model ensemble is to build
a predictive model by integrating multiple models to achieve
better performance than could be obtained from using models
individually (Maclin and Opitz, 2011; Rokach, 2010). The

most popular ensemble algorithms are Bagging and Boosting,
which are meta-algorithms that pool decisions from multiple
classifiers. Both these algorithms apply the Mixture of Experts
paradigm (Brown, 2010).

In the context of software fault localization using spectrum-
based fault localization (Abreu et al., 2007), approaches have
been proposed to combine several heuristics. In (Wang et al.,
2011) a search-based algorithm to combine the existing heuris-
tics. Xuan et al. (2014) proposed a machine learning-based
approach to combine multiple diagnostic rankings metrics. An
approach based in data fusion to heuristic combination was
proposed in (Lo et al., 2014).

Another body of related work is research related to choosing
the right level of modeling abstraction. As an example, in the
model-based diagnosis literature there has been considerable
work on diagnostic assumptions and selecting appropriate mod-
els for a diagnostic task (Struss, 1992). The work proposed
in (de Kleer, 2007) focuses primarily on assumptions associated
with choosing domain abstractions.

There has been considerable research on structural abstrac-
tion (Chittaro and Ranon, 2004; Hamscher, 1990) where groups
of components are combined to form larger systems to reduce
computational complexity. The work in (Sachenbacher and
Struss, 2005) describes how the task can be used to partition the
value of a variable into the qualitative values needed to solve a
task. In (Torta and Torasso, 2003) presents another approach to
partition the value of a variable into qualitative ranges to reduce
complexity when there is limited observability of the variables.

3. RUNNING EXAMPLE

We illustrate our concepts using a three-tank system, as shown
in figure 1. The tanks are denoted as T1, T2, and T3. They all
have the same area A1 = A2 = A3 = 3 [m2]. The three
tanks are indestructible and of infinite height representing an
idealized experiment. We assume that g = 10 and the liquid is
“pure” water with density ρ = 1.

q0

p1
* p2

* p3
*

V1 V2 V3

Fig. 1. Diagram of the three-tank system.

Tank T1 is filled from a pipe q0 with a constant flow of
0.75 [m3/s]. It drains into T2 via a pipe q1. The liquid level
is denoted as h1. There is a pressure sensor p1 connected to
T1 that measures the pressure in Pascals [Pa]. Starting from
Newton’s (and Bernouli’s) equations and manipulating them
(the actual derivation is irrelevant in this paper) we derive the
following Ordinary Differential Equation (ODE) that gives the
level of the liquid in T1:

dh1
dt

=
q0 − k1

√
h1 − h2

A1
(1)

In eq. 1, the coefficient k1 is the product of the cross-sectional
area of the tank A1 and the area of the drainage hole and

√
2g

and the friction/contraction factor of the hole. We emphasize
the use of k1 because, later, we will be “diagnosing” our system
in term of changes in k1. Consider a physical valveR1 between
T1 and T2 that constraints the flow between the two tanks.
We can say that the valve changes proportionally to the cross-
sectional drainage area of q1 and hence k1. The diagnostic task
is to compute the true value of k1, given p1, and from k1 we can
compute the actual position of the valve R1. The water levels
of T2 and T3, denoted as h2 and h3 respectively, are given by:

dhi
dt

=
ki−1

√
hi−1 − hi − ki

√
hi

Ai
, (2)

where i is the tank index (i ∈ {2, 3}).
We assume that k1 = k2 = k3 = 0.75.

Finally, we turn the water level into pressure:

pi =
g hiA

A
= g hi (3)

where i is the tank index (i ∈ {1, 2, 3}).
We assume that the initial water level in the three tanks is zero.

4. CONCEPTS AND DEFINITIONS

All concepts, definitions, and algorithms discussed in this arti-
cle are illustrated on a commonly used dynamic system consist-
ing of water tanks that are connected with valves.

4.1 Objective

We present an approach to automatically compose a global
diagnosis model Φ from a library C of different types of sub-
models, such that the model maximizes a given scoring function
Γ over a set A of diagnosis test cases.

We formalise our objective as optimizing a model such that:
φ∗ = argmin

φi∈Φ
Γ (A, C, φi) . (4)

where Φ is the space of all models composable from C accord-
ing to a model specification denoted by Φ.

In the following, we specify our notions of model library, model
specification, and scoring function.

4.2 Compositional Modeling

We define a component library C = {C1, C2, . . . , Cn} to
consist of a set of component types, such that type Ci, for
i = {1, 2, . . . , n} is defined as a set of models. Each type Ci
contains non-linear, linear, and qualitative models describing
the behavior of Ci.

A decomposable model can be described using two orthogo-
nal aspects: behavior and topology (interaction). The behavior
model describes the (possibly dynamic) behaviors of the system
and components. The topology model describes component
connectivity in terms of components and their connections, and
defines the constraints on component behaviors that enable their
interactions to be specified at the system-level.

Definition 1. (Topology). We describe the system topology of
a composable system using a graph G(V,E), where vertices
V correspond to components and edges in E correspond to
connections between components.

Given the system topology and equations from the component
models, we can then specify a system description as follows.
Definition 2. (System Description). Given a component library
C, a topology G(V,E), and some law of composition L, a
system description SD = 〈Φ,COMPS,OBS〉 is defined as a
set of equations Φ, a set of component variables COMPS, and
a set of observable variables OBS.

Let us continue with some notation and definitions.

4.3 Model Library Classes

Consider a component library C = {C1, C2, . . . , Cn} where
each component Ci for i = {1, 2, . . . , n} is defined as a set of
models. Each set Ci = {Ci,1, Ci,2, Ci,3} contains either a non-
linear, linear, or qualitative model, which describes the behavior
of component Ci.

We consider systems that can be described in terms of a set
x(t) of state variables, y(t) of observable variables, and u(t)
of control variables.
Definition 3. (Non-Linear Model). We write the dynamic equa-
tions for a model in state-space form using

ẋ(t) = ψ(x(t)) + u(t)) (5)

y(t) = γ(x(t)),u(t)), (6)
where ψ and γ are non-linear functions.

In the case of the three-tanks example, the non-linear model of
T1 is given by equations (1) and (3) and the models of T2 and
T3 are given by equations (2) and (3). We also include in our
model library a class of linear models, which are derived from
the non-linear models via model linearization Spanos (1977),
e.g., mapping the system behaviour around an equilibrium point
Roubal et al. (2010), or replacement of non-linear with linear
operators.
Definition 4. (Linear Model). We write the linear dynamical
equations for a model in state-space form using

ẋ(t) = Ax(t) + Bu(t) + Cω(t) (7)

y(t) = D(x(t)), (8)
where A, B, C and D are linear matrices, and ω(t) is a fault
vector.

For the linear three-tank model we replace the non-linear sub-
function

√
hi−1 − hi with the linear sub-function γi(hi−1 −

hi), where γi is a parameter (to be estimated) governing the
flow between tanks i− 1 and i. We obtain the following system
equations for tanks T2 and T3:

dhi
dt

=
ki−1(hi−1 − hi)− kihi

Ai
, (9)

Definition 5. (Qualitative Model). We write the dynamical equa-
tions for a qualitative model in state-space form using

ẋ(t) = υ(x(t)) + u(t)) (10)

y(t) = µ(x(t)),u(t)), (11)

where υ and µ are functions from the set of reasonable func-
tions f such that f ′ > 0 on the interior of its domain (Kuipers
and Åström, 1994).

For the qualitative model we replace the non-linear sub-
function

√
hi−1 − hi with the qualitative M+(hi−1 − hi),

where M+ is the set of reasonable functions f such that f ′ > 0
on the interior of its domain (Kuipers and Åström, 1994).

dhi
dt

=
1

A2

[
κ1M

+(hi − hi−1)− κ2M+(hi)
]

(12)

The tank heights are constrained to be non-negative. As a
consequence, we can discretize the hi to take on values {+, 0},
which means that M+(hi) can take on values {+, 0,−}. The
domain for dh1

dt must be {+, 0,−}, since q0 is non-negative and
each M+(hi − hj) can take on values {+, 0,−}.

4.4 Diagnostic Problem

This section describes our notion of diagnostics problem.
Definition 6. (Observation). Given a system description SD, an
observation α̃ = 〈α, tobs〉 is an instantiation of the variables in
OBS at a time instant tobs.

One possible observation for our running example is: p1 =
142.4, p2 = 26.8, and p3 = 13 at tobs = 300.
Definition 7. (Fault Injection). Given a system description SD,
a fault injection ε̃ = 〈ε, tinj〉 is an instantiation of the variables
in COMPS at a time instant tinj.

For the three-tanks example, fault injection values of R1 = 0.5
at time tinj = 250 would correspond to the first valve being
stuck at 50%.
Definition 8. (Diagnosis). Given a system description SD, a
diagnosis ω̃ = 〈ω, tdiag〉 is a probabilistic assignment of the
variables in COMPS at a time instant tdiag.

Continuing with the example, a diagnosis that reflects the given
observation and non-linear model of the three tanks is Pr(R1 =
0.5) = 0.931) at time tdiag = 310 which isolates the fault in 60
s with high accuracy.

All the above definitions are used in formulating the main
diagnostic problem for a dynamic system:
Definition 9. (Diagnostic Problem). A diagnostic problem DP
is defined as the quadruple DP = 〈SD, α̃, ε̃, ω̃〉.

4.5 Diagnostic Performance Metrics

Unlike other AI disciplines, in MBD there are multiple factors
that should be considered when applying performance met-
rics to real-world systems. We define a metric vector Γ =
{γ1, ..., γm} to represent the set of relevant metrics. The most
important computational metric is the number of diagnostic
errors, which is dual to the isolation accuracy (Feldman et al.,
2010).
Definition 10. (Diagnostic Errors). Given a diagnostic problem
DP the diagnostic errors metric Merr is defined as:

γ1 = Merr =
∑

c∈COMPS

|Pr(ωc 6= OK)− Inj(εc)| (13)

The second most important metric for a dynamic system is the
time between a fault is injected and when the algorithm detects
a fault.
Definition 11. (Isolation Time). Given a diagnostic problem
DP the isolation time metric Miso is defined as:

γ2 = Miso = tdiag − tinj (14)

Diagnostic algorithms are typically given a system model SD
and a set of test cases A = {〈α̃1, ε̃1〉, 〈α̃2, ε̃2〉, · · · , 〈α̃n, ε̃n〉}.
The main goal of these diagnostic algorithms is to optimize a
superposition of the diagnostic metrics. Each diagnostic metric
is weighted with a domain specific coefficient (these are g1 =
gerr, and g2 = giso, respectively, in the the cases of γ1 = Merr,
and γ2 = Miso). In this article, however, we solve an orthogonal
problem: given a diagnostic algorithm, a component library and
a set of test cases A, compute a model composition SD such
that g1γ1 + g2γ2 is minimized.

5. VARIABLE-FIDELITY MODEL LEARNING
ALGORITHM

This section describes our learning algorithm for model gen-
eration, shown in algorithm 1. This is a high-level description,
and the algorithm uses a diagnostic engine similar to the one
described by Feldman et al. (2013).

Algorithm 1: COMPOSEMODEL(G, C,A)
Input: G, model topology
Input: C, component library
Input:A, set of test scenarios
Result: SD, model
Local variables: SD?, SD′, models, initially ∅
Local variable: α, test scenario
Local variable: ω, diagnosis
Local variable: γ, diagnosis score
Local variable: γmin, optimal diagnosis score, initially∞

repeat
SD? ← NEXTMODELCOMPOSITION(G, C, SD′)
SD′ ← SD?

m← 0
foreach α ∈ A do

ω ← DIAGNOSE(SD?, α)
γ ← γ + EVALUATE(α, ω)

if γ < γmin then
γmin ← γ
SD← SD?

until TERMINATE?(SD?, SD′,m);
return SD

Algorithm 1 is non-deterministic. The non-determinism is in
the auxiliary function NEXTMODELCOMPOSITION (line 1).
This function takes a model topology and a component library
as inputs and returns a composed model. Each component
has multiple representations in the component library (e.g.,
qualitative, linear, non-linear). The total number of component
combinations is O(n|COMPS|), where n is the number of rep-
resentations. Fortunately, there is no need to perform a com-
plete search over the space of all possible model compositions.
A greedy-search strategy achieves satisfactory performance in
most practical cases.

The subroutine DIAGNOSE in line 1 implements a diagnostic
oracle. Given a system description SD?, and an observation

α, it computes a diagnosis ω (see definition 8). This diagnosis
can be compared to the fault injection to compute one or more
diagnostic metrics. This is done by the EVALUATE subroutine
in line 1. The combined metric result is accumulated in a
variable m. Algorithm 1 assumes that larger metrics are worse,
e.g. metric results are penalties, and it chooses the model that
minimizes the cumulative penalty. The assumption is that the
set of test scenarios is representative and the learned model SD
is going to minimize future scenarios with unknown faults.

Consider the three-tanks example. The subroutine NEXTMOD-
ELCOMPOSITION first generates a model where T1 is non-
linear, T2 is non-linear, and T3 is non-linear. In the second
call NEXTMODELCOMPOSITION changes T1 from non-linear
to linear. Depending on the implementation of NEXTMODEL-
COMPOSITION the next candidate can be either T1 and T2 non-
linear while T3 linear or T1 non-linear, T2 linear, and T3 non-
linear.

In our implementation we provide the following search poli-
cies:

Breadth-First Search (BFS): This search policy starts with
all components having the same model types (for example
non-linear), then considers all models with a single compo-
nent type change. After all single component type changes
are exhausted, the algorithm continues with pairs of compo-
nents, then triples, etc.

Depth-First Search (DFS): The algorithm starts by changing
the type of the first component, then the second, etc., until
all component types are changed. At this point, algorithm 1
backtracks one step, generates a sibling assignment and
continues traversing down and backtracking in the same
manner until no more backtracking is possible.

Forward Greedy Stochastic Search (FGSS): This is a ran-
domized search policy. In this mode, the algorithm starts by
changing the type of one of the components. If the change
improves the metric in line 1 of algorithm 1, then the change
is accepted (see lines 1–1 of algorithm 1). This is our pre-
ferred search policy as typically the evaluation metric im-
proves monotonically when changing the component types
one by one.

Backwards Greedy Stochastic Search (BGSS): In this mode,
the search starts with all component types changed from their
defaults. The type of a random component is then flipped
and the flip is retained iff the flip leads to a decrease in the
total metric evaluation score. The order of components is
arbitrary. As the whole search process is stochastic, it needs
to be run multiple iterations are necessary in order to achieve
the desired completeness.

The computational performance of algorithm 1 is determined
by the search choice, given an efficient implementation of the
DIAGNOSE subroutine:
Proposition 1. Algorithm 1 will terminate in O(mn) calls to
a diagnostic oracle, given exhaustive search (BFS and DFS)
and in O(n) calls to a diagnostic oracle given a greedy search
(FGSS or BGSS).

The proof of proposition 1 is elementary from the number of
combinations of component type in each component ensemble.

Like any learning method, algorithm 1 assumes that the future
is predictable given a test set of diagnostic scenarios. The model
computed by algorithm 1 will optimize the cumulative metrics

for this past set of scenarios but there is, of course, no guarantee
that the model is optimal in the general case.

6. EMPIRICAL ANALYSIS

This section discusses empirical results from various tank mod-
els. We adopt as our “gold standard” model a model of the
highest fidelity, i.e., a model composed entirely of non-linear
components.

Table 1 shows a benchmark consisting of variations of the 3-
tank model. For each system, we have experimented with a
single and with a double-fault injected at 250 and 275 seconds.
We have evaluated the diagnostic performance according to
three diagnostic metrics: (1) the diagnostic accuracy Merr, (2)
the isolation time tiso, and (3) the CPU time tcpu.

All tanks non-linear First tank linear

Number Fault
of tanks card. Merr tiso tcpu Merr tiso tcpu

2 1 241.8 3 10.59 997 1 8.52
2 2 807.2 3 10.64 1214.7 1 8.56
3 1 241.8 3 23.7 1075.6 1 17.96
3 2 805.6 3 24.04 1243.3 1 18
4 1 241.8 3 39.47 1191.9 1 34.59
4 2 813.7 3 39.5 1636.2 1 34.51

Table 1. Diagnostic quality for a benchmark of
ensembles

The results in table 1 show that the automatic model compo-
sition that we propose in this paper can lead to useful results.
In the partly-linearized model, although we have an increased
number of classification error, we benefit with shorter isolation
time and smaller number of CPU cycles. These effects are
not very well expressed due to the nature of the benchmark.
We expect significantly larger savings with a hybrid system:
for example one having logic gates best modeled by Boolean
equations and real-valued variables. We next look at these ex-
periments in detail.

Figure 2 shows the results from one test case: a failure injection
(valve R1 stuck at 50%) at t = 250. For this simulation we
use the highly accurate non-linear model. The results from this
simulation show that at the time of the fault injection, the water
level in tank T1 starts increasing while the water level at tanks
T2 and T3 start decreasing due to the lower inflow.

p_1
p_2
p_3

0

50

100

150

200

time	[s]
0 100 200 300 400

Fig. 2. Fault injection at t = 250 [s]

Next we use the simulation output shown in figure 1 to create
a test case for algorithm 1. The result of performing diagnosis
with the same non-linear model (that was used in simulation)
are shown in figure 3. We can see that the diagnostic accuracy
is high (the number of classification errors at t = 432 [s] is

R_
1

0

0.2

0.4

0.6

0.8

1

time	[s]
100 200 300 400 500

Fig. 3. Probability of R1 being at fault with all components
non-linear

only Merr = 0.034). The isolation accuracy is also very high
(Miso = 7 [s]).

Figure 4 shows the diagnostic accuracy and isolation time with
an all-linear model. This all-linear model delivers both poor
diagnostic accuracy (classification errors) and poor isolation
time. After the fault injection at t = 250 [s], the probability
estimation is better and the faulty valve appears at the top of the
list of faulty components. The benefit of the all-linear model is
that it is much faster to simulate.

R_1
R_2
R_3

0

0.2

0.4

0.6

0.8

1

time	[s]
100 200 300 400 500

Fig. 4. Probability of R1, R2, and R3 being at fault with all
components linear

The plot in figure 5 shows the diagnostic performance with
partly linear, partly non-linear model (T1 is non-linear, while T2
and T3 are linear). The diagnostic accuracy is almost the same
as the gold standard model, except a false-positive detection at
the beginning of the scenario that can be ignored. Of course, the
number of computations for simulating the partly linear model
is significantly smaller (recall that we need multiple simulations
for diagnosis). As a result this model is a preferred compromise
for diagnostic accuracy and computational complexity.

R_1

R_2

R_3

0

0.2

0.4

0.6

0.8

1

time [s]
100 200 300 400 500

Fig. 5. Probability of R1, R2, and R3 being at fault with T1
non-linear and both T2 and T3 linear

Algorithm 1 is insensitive to the cardinality of the fault injec-
tion. Figure 6, for example, shows the result of a double-fault
injection. The first fault represents a 50 %-stuck valve R1 at
t = 250 and the second fault represents a stuck-valve R2 at
75 % at t = 250. The figure shows that the effect of the second
fault is less pronounced due to its magnitude.

Figure 7 shows the fault-probability for the double-fault in-
jection shown in figure 6 with a fully non-linear model. For
this, we have configured the diagnostic reasoner to consider
double-fault hypotheses (see Feldman et al. (2013)). Both faults

p_1

p_2

p_3

0

50

100

150

200

250

time [s]
0 100 200 300 400

Fig. 6. Fault injection of a double fault at t = 250 [s] and
t = 300 [s]

are captured with short isolation time. Classification error is
Merr = 0 and Miso = 9 while for the second (cumulative)
fault we have Merr = 0.3545 and Miso = 31.

R_1

R_2

R_3

0

0.2

0.4

0.6

0.8

1

time [s]
100 200 300 400 500

Fig. 7. Probability of finding the double-fault with all compo-
nents non-linear

The results from our experiments are non-intuitive in a sense
that if we replace a non-linear component model with a linear
one it does not affect the diagnostic accuracy while it does
improve other metrics. This cannot be done mechanically for
all components as the diagnostic accuracy may deteriorate
suddenly. Our results indicate that the role of the topology for
diagnostic reasoning is important.

7. CONCLUSIONS

Despite successful applications within the machine learning
community (Brown, 2010; Dietterich, 2000), model ensembles
have not been adopted in diagnostics inference. This paper
addresses that gap by proposing an algorithm that, given a test
set of diagnostic scenarios, learns the optimal system model
from a library of component models.

We have shown the proposed algorithm on a dynamic system
consisting of three tanks connected with valves. Results in-
dicate that the model composition may be non-intuitive and
suggest that the choice of modeling abstraction depends on the
model topology and cannot be preconceived during the design
of the component library.

Future work includes a thorough validation of the proposed
algorithm using different topologies, modeling abstraction li-
braries, and different fault scenarios. We are also interested in
investigating the impact of the learning phase in the detection
phase of the algorithm.

REFERENCES

Abreu, R., Zoeteweij, P., and Van Gemund, A.J. (2007). On the
accuracy of spectrum-based fault localization. In Testing:
Academic and Industrial Conference Practice and Research
Techniques, 89–98. IEEE.

Breiman, L. (1996). Stacked regressions. Machine learning,
24(1), 49–64.

Brown, G. (2010). Ensemble learning. In Encyclopedia of
Machine Learning, 312–320. Springer.

Chittaro, L. and Ranon, R. (2004). Hierarchical model-based
diagnosis based on structural abstraction. Artificial Intelli-
gence, 155(1), 147–182.

de Kleer, J. (2007). Dynamic domain abstraction through meta-
diagnosis. In Abstraction, Reformulation, and Approxima-
tion, 109–123. Springer.

de Kleer, J. and Williams, B. (1987). Diagnosing multiple
faults. Artificial Intelligence, 32(1), 97–130.

Dietterich, T.G. (2000). Ensemble methods in machine learn-
ing. In Multiple classifier systems, 1–15. Springer.

Feldman, A., de Castro, H.V., van Gemund, A., and Provan, G.
(2013). Model-based diagnostic decision-support system for
satellites. In Proceedings of the IEEE Aerospace Conference,
Big Sky, Montana, USA, 1–14.

Feldman, A., Kurtoglu, T., Narasimhan, S., Poll, S., Garcia, D.,
de Kleer, J., Kuhn, L., and van Gemund, A. (2010). Empir-
ical evaluation of diagnostic algorithm performance using a
generic framework. International Journal of Prognostics and
Health Management, 1–28.

Hamscher, W. (1990). Xde: Diagnosing devices with hierarchic
structure and known component failure modes. In Artificial
Intelligence Applications, 1990., Sixth Conference on, 48–
54. IEEE.

Kuipers, B. and Åström, K. (1994). The composition and
validation of heterogeneous control laws. Automatica, 30(2),
233–249.

Kuncheva, L.I. and Whitaker, C.J. (2003). Measures of diver-
sity in classifier ensembles and their relationship with the
ensemble accuracy. Machine learning, 51(2), 181–207.

Lo, D., Xia, X., et al. (2014). Fusion fault localizers. In
Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering, 127–138. ACM.

Maclin, R. and Opitz, D. (2011). Popular ensemble methods:
An empirical study. arXiv preprint arXiv:1106.0257.

Rokach, L. (2010). Ensemble-based classifiers. Artificial
Intelligence Review, 33(1-2), 1–39.

Roubal, J., Husek, P., and Stecha, J. (2010). Linearization:
Students forget the operating point. Education, IEEE Trans-
actions on, 53(3), 413–418.

Sachenbacher, M. and Struss, P. (2005). Task-dependent qual-
itative domain abstraction. Artificial Intelligence, 162(1),
121–143.

Spanos, P.D. (1977). Linearization techniques for non-linear
dynamical systems. Ph.D. thesis, California Institute of
Technology.

Struss, P. (1992). Whatś in SD? towards a theory of modeling
for diagnosis. Readings in model-based diagnosis, 419–449.

Torta, G. and Torasso, P. (2003). Automatic abstraction in
component-based diagnosis driven by system observability.
In IJCAI, 394–402.

Wang, S., Lo, D., Jiang, L., Lau, H.C., et al. (2011). Search-
based fault localization. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software
Engineering, 556–559. IEEE Computer Society.

Wolpert, D.H. (1992). Stacked generalization. Neural net-
works, 5(2), 241–259.

Xuan, J., Monperrus, M., et al. (2014). Learning to combine
multiple ranking metrics for fault localization. In ICSME-
30th International Conference on Software Maintenance and
Evolution.

