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There have been multiple attempts to demonstrate that quantum annealing and, in particular, quantum anneal-
ing on quantum annealing machines, has the potential to outperform current classical optimization algorithms
implemented on CMOS technologies. The benchmarking of these devices has been controversial. Initially,
random spin-glass problems were used, however, these were quickly shown to be not well suited to detect any
quantum speedup. Subsequently, benchmarking shifted to carefully crafted synthetic problems designed to high-
light the quantum nature of the hardware while (often) ensuring that classical optimization techniques do not
perform well on them. Even worse, to date a true sign of improved scaling with the number of problem variables
remains elusive when compared to classical optimization techniques. Here, we analyze the readiness of quantum
annealing machines for real-world application problems. These are typically not random and have an underlying
structure that is hard to capture in synthetic benchmarks, thus posing unexpected challenges for optimization
techniques, both classical and quantum alike. We present a comprehensive computational scaling analysis of
fault diagnosis in digital circuits, considering architectures beyond D-wave quantum annealers. We find that the
instances generated from real data in multiplier circuits are harder than other representative random spin-glass
benchmarks with a comparable number of variables. Although our results show that transverse-field quantum
annealing is outperformed by state-of-the-art classical optimization algorithms, these benchmark instances are
hard and small in the size of the input, therefore representing the first industrial application ideally suited for
testing near-term quantum annealers and other quantum algorithmic strategies for optimization problems.

I. INTRODUCTION

Quantum annealing (QA) [1–7] has been proposed as the
most natural quantum computing framework to tackle combi-
natorial optimization problems, where finding the configura-
tion that minimizes an application-specific cost function is at
the core of the computational task. Despite multiple studies
[8–20], a definite detection of quantum speedup [13, 21] re-
mains elusive. Random spin-glass benchmarks [13] have been
shown to be deficient in the detection of quantum speedup
[11, 14], which is why the community has shifted to carefully-
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crafted synthetic benchmarks [19, 20]. While these have
shown that QA has a constant speedup over state-of-the-art
classical optimization techniques, their value for real-world
applications remains controversial.

Although the first proposal for a QA implementing combi-
natorial optimization problems with real constrains as they ap-
pear in real-world application was proposed close to a decade
ago [22], the question of whether a quantum annealer can have
a quantum speedup on any real-world applications remains an
open one. From the many applications implemented in quan-
tum annealers (see for example, Refs. [17, 23–28]), fault diag-
nosis has been one of the leading candidates to benchmark the
performance of D-Wave devices as optimizers [26, 29]. From
the range of circuit model-based fault diagnosis problems [30]
we restrict our attention here to combinational circuit fault di-
agnosis (CCFD), which in contrast to sequential circuits, does
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not have any memory components and the output is entirely
determined by the present inputs.

Using CCFDs, we illustrate the challenges and the readi-
ness of quantum annealers for solving real-world problems by
providing a comprehensive computational scaling analysis of
a real-world application. We compare quantum Monte Carlo
(QMC) simulations and QA experiments on the D-Wave Sys-
tems Inc. D-Wave 2X quantum annealer to several state-of-
the-art classical solvers on conventional computer hardware.
More specifically, our work is motivated by these open ques-
tions in quantum optimization with QA hardware:

1. What is the payoff of investing in the construction of spe-
cialized quantum hardware that natively matches the connec-
tivity and interactions (e.g., many-body terms in higher-order
Hamiltonians) dictated by the cost function of an actual appli-
cation?

2. What could be the impact in the computational scaling of
different annealing schedules or the addition of more complex
driver, such as non-stoquastic Hamiltonians?

3. Does quantum Monte Carlo reproduce the computational
scaling of the current generation of D-Wave QA machines?

Keeping in mind these are very general and ambitious goals
for a single work like the one presented here, we focus our
scope only to the case of optimization instances generated
from this real-world scenarios. We discuss the importance
of each of these algorithmic and architectural design aspects
related to each of the questions above, from an application-
centric and physics-focused perspective, providing answers or
insights only in some cases and under the assumptions and
computational resources described throughout this work. It
is demonstrated that CCFD instances based on Boolean mul-
tiplier circuits are harder than other representative random
spin-glass benchmarks. This makes the diagnosis of Boolean
multipliers a prime application for benchmarking QA archi-
tectures. Since our work hints the need for further develop-
ments, with the inclusion of more powerful driver Hamilto-
nians among one of the interesting research direction in the
search for quantum advantage, CCFD instances are ideal in-
dustrial application problems for testing such incremental im-
provements in near-term quantum annealers and novel quan-
tum algorithmic strategies for optimization problems.

Although tangential to the key results in this paper, in Ap-
pendix D we discuss the last of the three questions above. The
main reason for including this section is to highlight that from
our perspective of the first scaling analysis of a real-world ap-
plication, our results indicate that given the hardness of our
instances compared to synthetic data sets, the scaling becomes
a moot question. This is, even assuming a favorable sce-
nario where SQA scaling slope matches the DW2X scaling,
the prefactor is large enough that attempting to use compu-
tational resources for simulating SQA becomes prohibitedly
expensive. This has not been the case with other studies on
synthetic instances [19].

II. BENCHMARK PROBLEM

To benchmark quantum annealers with different physical
hardware specifications, we generate a family of multiplier
circuits of varying size. The circuit size is determined by the
size of two binary numbers of bit-lengths n and m, respec-
tively, to be multiplied. Figure 1 illustrates the layout of the
multiplication circuit for two binary numbers, each of length
k.

The optimization problem consists in diagnosing the health
status of each of the gates in the circuit, given an observa-
tion vector consisting of inputs and outputs, as illustrated in
Fig. 2. For the generation of the problem instances, we focus
on problems where the output is not consistent with the multi-
plication of the two input numbers and therefore the system is
expected to have at least one fault. Under the assumption that
all the gates have the same failure probability, the problem of
finding the most probable diagnosis is reduced to finding the
valid diagnoses with the minimal number of faults (see Ap-
pendix C for details). It is important to note that all CCFD
instances used in this study were randomly generated by in-
jecting a number of faults equivalent to the number of outputs
in the circuit [(n + m) for a (n-bit) ×(m-bit) multiplier cir-
cuit]. After the random fault injection of cardinality (n+m),
a random input is generated and the corresponding output is
obtained by propagation of the input under the corresponding
fault injection. Hence, we guarantee that every random in-
put/output pair generated this way has at least one solution.
The simpler strategy of generating random input/output vec-
tors can lead to problems that do not have a solution under
the diagnosis model. In the case of instances with many valid
minimal solutions, we count all the ones found by the stochas-
tic algorithms in the estimation of the success probability.

From a computational complexity perspective, the CCFD
problem is NP-hard [32], and it corresponds to the mini-
mization task we aim to solve either with QA on the D-
Wave 2X device (DW2X) at NASA, a continuous time version
[33] of simulated quantum annealing (SQA) [6, 12, 13] as a
QMC-based solver, or other classical optimization techniques,
such as simulated annealing (SA) [34, 35], parallel tempering
Monte Carlo (modified as a solver) [36–38] combined with
isoenergetic cluster updates [39] (PTICM), or current special-
ized SAT-based solvers tailored for this CCFD problem de-
scribed in Appendix B.

To perform a scaling analysis it is key to be able to gener-
ate a data set with varying input size and with a high intrin-
sic hardness such that classical solvers have a harder time,
increasing the chances that our instances fall into the hard
asymptotic regime for both classical and quantum approaches.
This has been one of the challenges for benchmarking early
QA devices, where the first proposals [12, 13] were conve-
nient but turned out to be too easy for benchmarking purposes
[11]. More recently, benchmarking have focused on carefully-
designed synthetic problems [16, 19, 20, 40]. However, as we
shall demonstrate in Sec. III B, CCFD-based problems are the
hardest benchmarking problems currently available.
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FIG. 1: Multiplier circuits used to generate our CCFD benchmark instances. In this example the multiplication of two numbers represented
as k-digit binary numbers, a1a2 · · · ak and b1b2 · · · bk is shown, resulting in a product output of length 2k, corresponding to p1p2 · · · p2k. HA
and FA denote half-adder and full-adder circuit modules, respectively.
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FIG. 2: Example of a model-based fault-diagnosis in combinational
circuits (CCFD) on a small full adder circuit. In this work, the CCFD
optimization problem consists in finding a smallest set of Boolean
gate outputs that, when stuck-at-one, match an input/output observa-
tion vector. This setting where one restricts the expected fault behav-
ior of the gates is known as the strong-fault model (see, for example,
Ref. [31]). Although in principle each gate can have a characteristic
fault mode, without loss of generality, we adopted stuck-at-one as
the fault mode for all gates. Generalizations to other common fault
modes and multiple fault modes per gate are detailed in Appendix C.
In this example, the flagged XOR gate is faulty, because its nominal
behavior should yield an output equal to zero. The diagnosis explains
the input {i1 = 0, i2 = 0, ci = 0} and the apparently anomalous
output {c0 = 0,Σ = 1}.

III. RESULTS AND DISCUSSION

A. Benchmarking real-world applications

Figure 3 summarizes the main challenges when bench-
marking applications with QA devices. The first step consist
of translating the standard format describing the rules and con-
strains of the minimization problem into a pseudo-Boolean
polynomial functionHP(sP), with domain sP ∈ {+1,−1}NP

and co-domain in R. Appendix C details the construction of
HP(sP) for this problem of minimal fault diagnosis in com-
binational circuits. The task to be solved consists in finding,
within the search space with 2NP possible solutions, the as-
signment s∗P that minimizes HP(sP). Because the pseudo-
Boolean function is a polynomial expression in the binary
variables sP, this optimization problem is known as a PUBO
problem which stands for polynomial unconstrained binary
optimization problem. Note that sometimes these problems
are also referred to as HOBOs, i.e, higher-order binary opti-
mization problem. The specific case of a quadratic function
leads to the known QUBO [41] which is the type that is na-
tively implemented in D-Wave quantum annealers. See Ap-
pendix. A for more details on the QA implementation.

In the case of the benchmark of multiplier circuits, the stan-
dard problem description format is a list of propositional logic
formulas similar to the ones given in Fig. 3, corresponding to
the nominal behavior of each gate within the full-adder circuit
illustrated in Fig. 2. For the case of the strong-fault model
[31] considered here, one needs to add specific propositional
logic formulas associated with the expected behavior when
each gate is faulty. Without loss of generality, and for the
purpose of the benchmark generated here, we considered that
whenever any gate fails, it would be in a stuck-at-one mode
or equivalently, in propositional logic, fi ⇒ zi. Here fi de-
notes the health variable associated with the i-th gate and zi its
corresponding gate output. Note that fi = 1 means faulty and
fi = 0 nominal. Extensions to other fault modes are described
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FIG. 3: Generation of benchmarks driven with real-world scenar-
ios flowchart. The first challenge consists in finding an efficient
translation of the natural description of the optimization problem
into a pseudo-Boolean function [panel (a)], HP(sP), with domain
sP ∈ {+1,−1}NP and co-domain in R. The resulting polynomial
unconstrained binary optimization (PUBO) problem consists in find-
ing assignments s∗P which minimizes the quartic-degree polynomial
HP(sP) [panel (b)]. This specific degree, known as the locality of
the Hamiltonian (here, 4-local), arises from the effective local inter-
actions between gates with two input variables xi,1 and xi,2, the wire
output zi, and the health variable, fi, associated to each gate. By
adding ancilla qubits, (a), the quartic (4-local) sisjsksl and cubic
(3-local) sisjsk terms can be reduced to an effective 2-local Hamil-
tonian defining an effective quadratic unconstrained binary optimiza-
tion (QUBO) version of the problem instance [panel (d)]. Finally,
minor-embedding can be used to embed the QUBO into the physical
hardware – in this case the chimera structure (see Fig. 7) of the D-
Wave quantum annealers [panel (c)]. The cost of the embedding is
an additional overhead in the number of qubits. While the “proposi-
tional logic” panel contains the description of the full-adder circuit in
Fig. 2, the remaining are realistic representations of one of the small-
est instances from our multiplier circuit with 23, 33, and 72 qubits
(or spin variables), for its PUBO, QUBO, and DW2X representation,
respectively. In this work, we assess the impact on the performance
of each of these representations and also perform experiments on the
DW2X. Steps 1 – 4 denote some of the desiderata for an applica-
tion to be a potential candidate for benchmarking next generation
of quantum annealers. Note that while the D-Wave device requires
the embedding of a QUBO. However, future hardware implementa-
tions might include k-local interactions with k > 2. Therefore, we
perform the classical simulations both in the QUBO and PUBO rep-
resentations to compare both approaches.

in Appendix. C. In the specific mapping considered here, sP
contains the health variables, along with variables specifying
the values for each of the internal wires within the multiplier
circuit.

A generic classical solver such as SA or PTICM can
tackle the optimization problem in th PUBO representation
directly because one can easily evaluate HP(sP). As shown
in Sec. III C, working in this PUBO representation is the pre-
ferred approach from the application perspective. As men-
tioned in the explicit mapping construction in Sec. C, HP(sP)
is a polynomial with at most quartic degree, independent of
the circuit size. A quantum annealer capable of implement-
ing such quartic polynomials can certainly aim at solving the
problem in this representation. Given the possibility of such
experimental designs (see, for example, Ref. [42]), we also
consider hypothetical quantum annealers that we study using
SQA to assess the impact in the performance of working with
a quantum annealer that can natively solve the PUBO prob-
lem. Unfortunately, no such devices exist to date and there is
an overhead in representing the quartic (4-local) and cubic (3-
local) monomials in HP(sP) with a resulting only-quadratic

expression (2-local). The contraction techniques [43] used to
reduce the locality incur an overhead of variables by introduc-
ing ancillas (for a tutorial of a specific practical example see
Ref. [22]). This is not desirable because it increases the search
space from 2NP to 2NQ , with NQ the number of variables
sQ in the resulting new quadratic expressions HQ(sQ) as the
new representation from HP(sP). sQ is now the union of the
health variables f , the wires x, and the ancilla set a. The over-
head is linear in our case as shown in Fig. 9. The next chal-
lenge presented in Fig. 3 towards implementing a real-world
application is that most likely there will be quadratic term in
HQ(sQ) representing qubit-qubit interactions not present in
the physical hardware. This will be the case unless one specif-
ically designs the layout of the quantum annealer hardware to
match the resulting connectivity graph dictated directly by the
application through HQ(sQ). Representing the logical graph
within another graph is called the minor-embedding problem
[44]. For the case of the connectivity graph pre-defined in
the D-Wave devices, also known as chimera graph, we use
the heuristic solver developed in Ref. [45]. As can be seen
in Fig. 9, the overhead is linear given the relatively sparsity
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of the graphs resulting from the multiplier circuits. This is
an encouraging result given that the overhead for an all-to-all
connectivity graph embedded onto the chimera architecture is
quadratic in the number of variables. A much larger problem
than minor embedding when embedding an application onto a
limited connectivity hardware graph is parameter setting. For
example, there is no rule of thumb as to how strong the cou-
plers for a set of ferromagnetically-coupled qubits defining
a physical qubit should be. A sweet-spot value is expected,
however it is not easy to determine or predict in the most gen-
eral setting. In this work, and for all the experiments on the
D-Wave 2X, we used the strategy proposed in Ref. [46] for
both setting the strength of the ferromagnetic couplers and for
the selection of gauges. The final challenge when embedding
applications is the requirement that the pseudo-Boolean func-
tion to be minimized has a low precision requirement because
analog QA machines operate on a limited precision dictated
by the intrinsic noise and finite dynamical range of parame-
ters found in these devices.

Summarizing, from our experience with applications, the
CCFD instances considered here are the best candidate to
match each one of the aforementioned requirements. The
mapping from propositional logic to PUBO is compact and
efficient given that in the digital circuits considered here all
the input, outputs, health variables and wires are all binary
variables, the resulting QUBO graph is sparse enough that the
overhead to embed onto hardware is linear, and the randomly-
generated instances have a higher intrinsic hardness com-
pared to other random spin-glass previously studied, as will
be shown in Sec. III B.

Although we do not expect the intrinsic exponential scal-
ing of this problem to disappear for the worst case scenario
by a mere change of representation or the solver used, the re-
sults could be different for each setting when computational
times for typical instances are considered, and for the accesi-
ble problem sizes. The details and scaling slopes obtained for
each of the approaches considered here are of extreme impor-
tance from a practical point of view, and used for addressing
any meaningful advantage in the following sections.

B. Hardness compared to other random spin-glass
benchmarks

Figure 4 addresses the hardness of instances embedded in
the chimera topology (C) generated from the CCFD data set
by comparing to random spin-glass problems used to bench-
mark the performance of D-Wave quantum annealers [see
Eq. (A1) for the actual Hamiltonian to be minimized]. Bi-
modal instances were the first to be used in benchmarking
studies [12, 13] and are the simplest to generate. For these,
the available couplers in the D-Wave 2X are randomly chosen
to be Jij ∈ {±1}with biases hi = 0. The reason why random
bimodal instances are too easy for quantum and classical algo-
rithms alike is their high degeneracy resulting in a large num-
ber of floppy spins. To overcome this problem, Refs. [14, 47]
introduced couplers distributed according to Sidon sets [48]
combined with post-selection procedures. These naturally in-

crease the hardness of problems by reducing degeneracy to a
minimum and removing floppy spins. For the case of Sidon
instances [47] the values of the couplers Jij are randomly se-
lected from the set {±5,±6,±7}, with hi = 0. Planted/C
instances correspond to an attempt to increase the hardness of
random spin-glass instances (see Ref. [16]), but with a known
solution. For the data shown, we asked the main author in
Ref. [16], if he could provide us with the hardest set of in-
stances he could generate; the only restriction being that they
would need to be generated randomly and not being post-
selected for hardness as the rest of all the other families of
instances here. The attempt consisted of drawing the couplers
from a continuous distribution instead of from a discrete dis-
tribution as the one in the original paper, Ref. [16], or as in the
case of the Bimodal and Sidon set considered here.

Figure 4(a) illustrates that already for approximately 600
variables the CCFD/C instances are at least one order of mag-
nitude harder than Sidon/C which is the hardest set among
the random spin-glass problems. Figure 4(b) summarizes the
asymptotic scaling of each of these problem types, clearly sep-
arating our CCFD instances from any of the random spin-glass
instances, with Sidon and Bimodal having roughly the same
scaling. Here we assume that the time-to-solution TTS in µs
can be fit to TTS ∼ exp(b

√
N)] with N the number of vari-

ables. This conclusion is independent of the percentile consid-
ered as shown in Fig. 10 in Appendix. F. Our results also show
that the attempt to make hard planted instances did not provide
any additional hardness compared to the other random spin-
glass problems, at least when they are evaluated with PTICM.
Therefore, the CCFD/C instances are not only harder in terms
of computational effort, according to TTS, but also from a
scaling perspective.

The data set Bimodal/CCFD provides insights as to why
these instances are hard. There are three options of why these
instances are intrinsically harder than any other random data
set explored here. One option is that the underlying CCFD
graph defined by the QUBO problem for each multiplier type
has some sort of nontrivial long-range correlations or a much
higher dimensionality in such a way that the problems, when
minor-embedded onto the chimera lattice, become harder than
typical chimera instances. Another explanation relies on the
characteristic value of biases h and coupler values J in the
Hamiltonian [Eq. (A1)] which could be responsible for the
complex-to-traverse energy landscape. Furthermore, there
could be interplay between the two aforementioned options.
To address this question, we generate Bimodal instances on
the native QUBO graph defined by multiplier circuits of vary-
ing sizes, denoted here as “Bimodal/CCFD.” If the underly-
ing graph contain features that intrinsically “host” hard in-
stances, then one would expect that both the scaling and TTS
could be different than those on the chimera graph. Figure
4 shows that the Bimodal/CCFD instances happen to be even
easier than the Bimodal instances embedded onto the chimera
graph. This means that the intrinsic hardness of these CCFD
instances most likely is related to the structure and the rela-
tionship between the specific biases h and couplers J values
defining them. Further studies are being performed to study
this in more detail.
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(a)

(b)

FIG. 4: Hardness comparison of the chimera representation of the
CCFD instances with other representative random spin glass prob-
lems from the literature. (a) For consistency, all the time-to-solutions
(TTS) in µs were obtained with PTICM with the same single-core
processors. (b) Note the steeper scaling [larger value for b from a fit
of the TTS to TTS ∼ exp(b

√
N)] for the CCFD problems com-

pared to the other classes of random spin-glass benchmarks. Data
points correspond to the median values extracted from a bootstrap-
ping statistical analysis from 100 instances per problem size, with
error bars indicating the 90% confidence intervals (CI). The different
instance classes are described in the main text.

C. Scaling analysis: Application vs physics perspective

Fig. 5 provides insights about the CCFD instances from a
physics and from the application perspective. While in the
former we analyze the scaling of computational resources
via the time-to-solution TTS using the number of variables√
N , in the latter we analyze the resource requirements by

the application-specific variables, namely the type of multi-
plier used. The physics perspective here aims to answer ques-
tions about the performance of QA compared to other classical
solvers on a comparable footing, ignoring for a moment that
the instances were generated from a specific application. For
example, we compare here the performance of QA to other
classical and alternative quantum solvers on instances repre-
sented on a chimera graph (C); similar to previous extensive
benchmarking work on synthetic random spin-glass instances.
We go beyond such studies and provide as well insights on the
performance of QA for the QUBO (Q) instances on their na-
tive graph dictated by the CCFD application and also on hy-
pothetical quantum annealer devices capable of natively en-
coding up to quartic interactions (P).

For the physics scaling analysis we chose to plot the TTS
computational effort as a function of

√
N , with N being

the problem size in terms of number of spins, regardless of
whether the problem to be minimized is in a PUBO (P),
QUBO(Q), or chimera (C) format. This selection is motivated
by the linear relation between any pair of problem sizes NP,
NQ or NC (see Fig. 9) and the fact that the scaling for prob-
lems on the quasi-planar Chimera graphs is expected to be a
stretched exponential, largely due to its tree width∼ √NC, in
contrast to a tree width ∼ N characteristic of fully-connected
graphs [49].

The analysis from the application perspective aims for in-
sights on the performance where the sole purpose is to find
the solution to the CCFD problem. Here, it is natural to plot
the TTS computational effort as a function of a characteristic
property of the circuit scaling with the problem size, regard-
less if one considers a symmetric multiplier, mult[n-n] or an
asymmetric one, i.e., mult[n-m]. We chose this quantity to be
the number of gates in the circuit, Ngates (or more precisely√
Ngates), which is justified given the linear relationship be-

tween Ngates ∝ NP ∝ NC illustrated in Fig. 9, and the
expected stretched exponential behaviour in

√
NC discussed

above for chimera graphs.
a. Limited quantum speedup — Figure 5(a) compares

the single-core computational effort of SA, PTICM, SQA
(with both linear and DW2X schedules), and the experimental
results obtained with the DW2X quantum annealer. Repre-
sented with diamond symbols in Fig. 6 and with values on
the right axis, we plot the asymptotic analysis performed by
considering only the four largest sizes from each of the data
sets. From this scaling analysis and the value of the main
scaling exponent b (slopes of curves in Fig. 5) for the chimera
instances SA/C and DW2X, it can be seen that we also find
here limited quantum speedup (without optimizing annealing
schedules) [21] as found for the benchmarks on synthetic in-
stances used in the study by the Google Inc. [19]. From this
physics perspective, there seems to be even a quantum advan-
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(a)

(b)

FIG. 5: Scaling analysis from a (a) physics, and (b) an application-
centric perspective. The TTS is plotted as a function of

√
N , with

N the number of spin variables in each of the problem representa-
tions [PUBO (P), QUBO (Q), or chimera (C)]. Panel (b) corresponds
to

√
Ngates, with Ngates the number of gates regardless if we are

considering symmetric multipliers, mult[n-n] as in Fig. 1, or asym-
metric ones (mult[n-m]). The legend for the data sets depicted in
panel (a) is shared with panel (b), with SAT-based results only ap-
pearing in panel (b). SQA/C runs were performed with an optimized
linear schedule, as well as the DW2X schedule, marked with “ls” and
“dws” subscripts, respectively, (details in Appendix D).

tage when comparing with SA at the PUBO level, SA/P, which
happen to have a better scaling than both of their quadratic
counterparts, SA/Q and SA/C. The values are close enough

FIG. 6: Asymptotic scaling analysis. The asymptotic scaling expo-
nent bapp refers to the multiplier representation, whereas bphys refers
to the physical representation of the problem. Data points correspond
to the median values extracted from a bootstrapping statistical anal-
ysis from 100 instances per problem size, with error bars indicating
the 90% confidence intervals (CI).

that one has to be careful because the real bphys (DW2X)
might be larger than the calculated in our analysis due to
sub-optimal annealing time [13, 21, 50]. On the other hand,
note that the quantum advantage at the level of the same rep-
resentation where bphys(DW2X) � bphys(SA/C) also holds
against any of the optimized SQA/C implementations, either
with a linear or DW2X schedule. Although we believe that
it is very unlikely that sub-optimal time can change our lim-
ited quantum speedup conclusion because bphys(DW2X) �
bphys(SA/C), we note that optimized SQA corroborates these
claims. This scaling advantage already yields a difference of
approximately six orders of magnitude on a single-core CPU
in the TTS between DW2X and SA/C for the largest problem
studied (mult[4-4]). It is important to remind the reader that
our results are with a fixed annealing time, and although we
justify that it would be very unlikely that the slope of DW2X
could match that of SA/C, the best practice to have conclusive
limited quantum speedups results would be by optimizing the
annealing time in the quantum annealers runs [13, 51]. Ex-
ploration of the impact of the optimal annealing time in the
CCFD instances could be an interesting piece of work in its
own and it is left as future work.

b. SQA vs DW2X and impact of the annealing schedule
— From a computational prefactor perspective note that the
computational effort for the DW2X is smaller by six to eight
orders of magnitude than the SQA/C implementations with ei-
ther linear or the D-wave schedule. It is important to note that
the TTS in Figs. 5(a) and 5(b) is for SQA as a classical com-
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putational solver. For a fair comparison of the scaling of SQA
to that of a physical quantum annealer such as the DW2X, the
SQA TTS results must be divided by N to account for the
intrinsic parallelism in QA, as illustrated in Fig. 8. Further
analysis of the scaling comparison of SQA and the DW2X
device can be found in Appendix D.

Figures 5(a) and 5(b) illustrate that the selection of a poor
schedule (the D-wave schedule in this case in comparison to
simpler linear one) can have a significant impact in the com-
putational efficiency of SQA as as classical computational
solver. As discussed in Appendix D, most likely the differ-
ence is only at the level of a prefactor and most likely it is
not a scaling advantage. Whether there are schedules that can
change the asymptotic scaling remains an open question. In
Appendix D we also discuss that although there seems to be
a scaling advantage of the DW2X over the SQA simulations,
the results are also inconclusive given that the scaling of the
DW2X might be slightly different due to any sub-optimal an-
nealing times. We leave it to future work to optimize the an-
nealing time of the DW2X because it is beyond the scope
of this work given the sizable computational requirements
needed.

c. QA performance for Hamiltonians with higher-order
interactions — A question not addressed to date is the per-
formance comparison between QA architectures with 2-local
and k-local (k > 2) interactions within the scope of real-world
applications. For example, the CCFD mapping used in this
work (see Appendix C for details) natively contains cubic (3-
local) and quartic (4-local) interactions and one might think a
quantum annealer natively encoding those might have an ad-
vantage over 2-local terms. Perhaps one of the most remark-
able findings in this study from our SQA simulations is that
working directly with a Hamiltonian containing such quartic
interactions does not seem to help QA with a transverse field,
because bphys(SQA/Q) < bphys(SQA/P). Note that this result
is in contrast to the behavior of the classical algorithms con-
sidered here. In the case of SA there seems to be an advantage
for solving the instances in the PUBO representation over the
QUBO [bphys(SA/Q) > bphys(SA/P)]. In the case of PTICM,
bphys(PTICM/Q) ≈ bphys(PTICM/P). These remarks on the
physics scaling have a significant impact on the scaling from
the application perspective. Note that while in all the classical
methods there is a clear preference to solve the problem in the
PUBO representation, the case of SQA shows no advantage
for the quantum annealer in the PUBO representation. On the
contrary, as shown in Fig. 11 for the higher percentiles above
the median, there seems to be a slight preference of SQA/Q
over SQA/P not only in the absolute value of computational
effort measured in TTS [see last data point in Fig. 11(d)], but
also in scaling terms.

The insight to be extracted from the SQA simulations in the
context of this CCFD application is that simply adding higher-
order terms would not necessarily imply any enhancement in
the performance. This result is striking for two reason.

First, because in the application scaling we plot the
TTS results vs

√
Ngates, then when changing representa-

tions from PUBO to QUBO, there is a natural tendency for
bapp(Q)/bapp(P) > bphys(Q)/bphys(P). This is because NQ is

always greater thanNP, and therefore even in the case of com-
parable physics scaling slopes as is the case of PTICM with
bphys(PTICM/Q) ≈ bphys(PTICM/P) this would imply that

TTSPTICM/P ∼ ebphys
√
NP ∼ ebphys

√
αP←g

√
Ngates ,

while

TTSPTICM/Q ∼ ebphys
√
NQ ∼ ebphys

√
αQ←PαP←g

√
Ngates ,

valid in the asymptotic limit Ngates � 1 of interest here.
Therefore,

bQapp = bphys
√
αQ←PαP←g > bPapp = bphys

√
αP←g.

Here we have used that, in this limit, NP ∼ αP←gNgates and
NQ ∼ αQ←PNP, and both, αQ←P and αP←g are greater than
1, as shown in Fig. 9.

Second, the penalties of the locality reduction ancillas
change the energy scale and it is expected that stochastic
solvers such as SA (which heavily depend on the barriers in
the energy landscape) also suffer from the new QUBO energy
landscape with taller barriers. This is indeed what we observe
because bphys(SA/Q)> bphys(SA/P). Note that PTICM seems
to be more resilient to these barriers and, as discussed before,
bphys(PTICM/Q) ≈ bphys(PTICM/P). Both of these driving
forces would imply that the application perspective scaling of
QA working in the PUBO representation should be better than
in the QUBO representation and it is not what we observe
here. This second explanation is reasonable and a good in-
dication that SQA is doing a good job at not “feeling” these
taller barriers, something that could be explained by means of
quantum tunneling.

From the first argument it follows that bapp(SQA/Q) ≈
bapp(SQA/P), implying that bphys(SQA/Q) < bphys(SQA/P)
which is quite distinctive and different from what we observe
in the classical approaches. It is clear that SQA is having a
harder time traversing the PUBO energy landscape and find-
ing the ground state in this representation, despite the smaller
problem size. One plausible explanation is that the transverse-
field implementation is not powerful enough to take advantage
of the compactness of the PUBO energy landscape. We thus
emphasize that any development of new architectures with k-
local couplers with k > 2 should be accompanied by other de-
velopments, that could enhance its computational power, such
as the inclusion of more sophisticated driver Hamiltonians.

d. Impact of the limited connectivity — Here we address
the issues that occur with limited-connectivity hardware (see
Fig. 3). From the physics scaling perspective, Fig. 5(a) and
Fig. 6 show that there are no major effects in solving the prob-
lems with the QUBO or with the chimera representation. This
seems to be a common feature across classical and quantum
approaches. Following the argument just previously made in
the case of the PUBO vs QUBO discussion, we show that
bphys(Q) ≈ bphys(C) and NC ∼ αC←QNQ, implies that
bapp(C) > bapp(Q). Here, αC←Q = 3.5026 from Fig. 9.
Although it has always been expected that more connectivity
should be better, to the best of our knowledge this is the first
demonstration that having a quantum annealing device with
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more connectivity can have a significant impact when solving
real-world applications. Our results, within the context of the
CCFD application, show that the advantage here is not simply
an overall prefactor improvement in the TTS but that an im-
portant asymptotic scaling advantage is expected as well. As a
reminder to the reader, this in-silico advantage from SQA will
be matched by a quantum hardware implementation only un-
der the assumption that the asymptotic scaling of SQA ”mim-
ics” the performance of QA. As stated in the introduction, this
is an unsettled question and beyond the scope of our work.

e. Comparison of QA with generic and tailored algo-
rithms for CCFD — The main question that motivated this
study was if QA can efficiently solve CCFD problems. Fig-
ures 5(b) and 6 show that from the application perspective the
scaling of the DW2X quantum annealer and of any of the SQA
variants considered here does not look favorable for QA. In
fact, the DW2X does not even scale better than simulated an-
nealing (SA/P). One of the major challenges for devices with
a small finite graph degree connectivity (such as the DW2X
with the chimera topology) is that to solve real-world appli-
cations it carries all the qubit overhead from the transforma-
tions PUBO to QUBO over to chimera. However, the appli-
cation scaling can be improved. For example, reducing the
number of qubits needed to represent the application would
most likely improve the scaling performance. In Sec. C we
present an alternative and more efficient mapping that we aim
to explore in further studies. It is important to note that the
new mapping improves the performance of SA and PTICM
accordingly. Note that from all the approaches, the most effi-
cient with the best scaling is a SAT-based solver developed by
our team for this study which excels in this strong-fault model-
based diagnosis of multiplier circuits. The SAT-based solver
does not depend on any of the PUBO, QUBO or Chimera rep-
resentation because it has the advantage of constructing its
own variable representation and set of satisfiability constrains
directly from the propositional logic level shown in panel (a)
of Fig. 3. Although all other classical stochastic solvers used
(SA, PTICM, and SQA) might work directly with the proposi-
tional logic as well, the evaluation of the cost function would
be highly nonlocal compared to the evaluation of the differ-
ence in energy required for the Metropolis update in the case
of the polynomial evaluation. By nonlocal we mean that if we
were to work with only the fault variables and use the propo-
sitional logic instead of constructing the PUBO and including
the internal wire variables, then we would need to propagate
from inputs all the way through each gates and their health
status assignment to obtain the predicted outputs and subse-
quently an effective energy that can be used in the Metropolis
update. For every pair considered in an Metropolis update, the
whole process need to be applied and later subtracted. In con-
trast, in any of the polynomial representation, because all the
faults and wires variables are considered, the evaluation of the
energy difference can be applied very efficiently by only con-
sidering the few terms that change the energy by the respec-
tive variable flip. Most importantly, because the main point of
this contribution is to compare with algorithms that could be
implemented in QA architectures, we did not explore this im-
plementation. We leave it as an open question whether algo-

rithms like SA can have a better scaling on that propositional
logic representation.

IV. CONCLUSIONS

Regardless of the substantial efforts in benchmarking, the
study of early generation quantum annealers has been done
exclusively with synthetic spin-glass benchmarks. However,
comprehensive studies comparing several quantum and classi-
cal algorithmic approaches, including state-of-the-art tailored
solvers for real-world applications, had been missing. In this
work we present a comprehensive benchmarking study on a
concrete application, namely the diagnosis of faults in digital
circuits, referred in the main text as CCFD. More specifically,
we provide insights on the performance of QA in the context
of the CCFD instances by performing an asymptotic scaling
analysis involving five different approaches: QA experiments
on the DW2X compared to three classical (SA, PTICM, and
a CCFD-tailored SAT-based solver), and extensive QMC sim-
ulations, most of them on three different problem representa-
tions (PUBO, QUBO on the native CCFD graphs, and QUBO
on the DW2X chimera topology), for instances of multiplier
circuits of varying size. It is important to note that by asymp-
totic analysis we refer to conclusions drawn from the largest
problem sizes accessible to us to experiment with in each of
these approaches.

We have analyzed the problem with two foci: a physics
perspective and an application-centric perspective. The em-
phasis of the physics perspective is similar to previous rep-
resentative benchmark studies [8–20, 50], that aim at prob-
ing the computational resources of QA, and to answer ques-
tions such as whether it is even possible in synthetic data sets
to prove an asymptotic quantum speedup, or to address the
role of quantum tunneling, among other open questions in the
field. Within our physics perspective we add several issues not
thoroughly considered in other benchmark studies. For exam-
ple, what is the impact in the computational scaling of solv-
ing the problem directly with Hamiltonians natively encoding
many-body interactions beyond pairwise as those naturally
appearing in real-world applications? What is the impact in
the scaling from solving the problem instances on (hypothet-
ical) physical hardware with different qubit connectivity con-
strains, e.g., by comparing the QA performance on connec-
tivity graphs dictated by the CCFD instances and the minor-
embedded representation in the DW2X Chimera graph?

From this physics perspective we show that our instances
are hardest when compared to any of the proposed random
spin-glass instances (see Fig.. 4). Intrinsic hardness is one
of the long sought-after features when performing benchmark
studies [11, 16, 20], therefore making our CCFD instances
currently the best candidate for benchmarking the next gener-
ation of quantum annealers. In particular, because these prob-
lems stem from real-world applications, in contrast to random
synthetic benchmarks on the native D-wave’s chimera graph
which have been dulled not only for giving an advantage to the
hardware but also for lacking practical importance [52, 53].

We also address the question of whether SQA can repro-



10

duce the scaling of the DW2X for the CCFD application. Al-
though the results in Fig. 8 might lead to the conclusion that
clearly SQA has a different scaling than the DW2X, the fact
that most likely the DW2X is running at a sub-optimal anneal-
ing time might be distorting the scaling and resulting in a bet-
ter apparent scaling. More extensive studies with enough data
points — where one can optimize for the optimal annealing
time — might reveal the real scaling of the device. Although
this is, in principle, feasible on quantum annealers, the main
challenge might rely on SQA simulations which are already at
the limit of what is computationally feasible. In Appendix D
we discuss the apparent different scaling of SQA with a lin-
ear schedule compared to SQA with the same schedule as the
D-Wave device and the challenges on drawing any meaning-
ful conclusions about the difference in scaling between the
DW2X and SQA. From the choice of schedule perspective,
we find that within SQA as a solver, the linear schedule seems
to be more efficient, but most likely not bringing any scaling
advantage.

When compared on the same representation (either native-
QUBO or Chimera-QUBO) we show that both, SQA and the
DW2X have a limited quantum speedup by showing a scal-
ing advantage over SA. We arrive at this conclusion assuming
the DW2X scaling obtained here is not drastically affected by
the non-optimal annealing time, which is very unlikely due
to the large difference in the slopes between SA and SQA
and DW2X. These results confirm the presence of quantum
tunneling in the DW2X; a quantum speedup restricted to se-
quential algorithms [21] similar to the Google Inc. study on
the weak-strong clusters instances [19]. One important high-
light here is that ours is the first demonstration on instances
generated from a concrete real-world application and where
the multi-spin co-tunneling needs to happen more often on
the strongly ferromagnetically coupled physical qubits encod-
ing the logical units from the original QUBO problem. Al-
though it is encouraging to see that such co-tunneling events
seem to be happening in the hardware at the problem sizes
considered here, the minor-embedding mapping logical vari-
ables into physical qubits in the hardware usually involves the
generation of long “chains.” Further studies need to be per-
formed using larger instances to see if this advantage remains,
and where longer “chains” with 10 or more qubits would be
more frequent. The comparison against other generic solvers
like PTICM or tailored solvers like the SAT-based solver de-
veloped here, were not favorable for our SQA simulations and
DW2X experiments. It is important to consider that both,
SQA simulations and DW2X experiments, were done with
stoquastic Hamiltonians as the only ones available in current
hardware. It is expected that non-stoquastic Hamiltonians will
bring a boost in performance [54, 55], although it is an open
question if they will have any asymptotic scaling advantage.

The application-centric perspective is more challenging and
raises the bar significantly for quantum annealers. Here, we
find that the tailored SAT-based algorithm performs best. We
note that the performance is even better that the PTICM algo-
rithm, which is currently the state-of-the-art in the field [56].
Although the results using quantum optimization approaches
as seen from the application perspective are not that encour-

aging, our study suggests next steps to be taken in the field of
quantum optimization. First, there is a clear need for higher-
connectivity devices. Second, our SQA results suggest that
adding higher-order qubit interactions [42, 57] to new hard-
ware might require also the addition of more complex driving
Hamiltonians.

This rather extensive study should be considered as a base-
line for future application studies. We do emphasize, however,
that the conclusions should be interpreted within the context
of the particular CCFD application. Furthermore, the results
are for the specific case of conventional QA with a transverse
field driver. The poor performance of QA should be seen as an
incentive for the community to address important missing in-
gredients in the search for quantum advantage for real-world
applications. Other variable efficient mappings (as shown in
Appendix C 2) could also provide a performance boost. We
note that the latter should also provide an advantage for clas-
sical solvers, because larger systems could be studied. A de-
tailed performance comparison of our CCFD benchmarks to
other mapping strategies [29] will be done in a subsequent
study.

Further adding other features, such as better control of the
annealing schedules via “seeding” of solutions [58], and the
subsequent developments of classical-quantum hybrid heuris-
tic strategies [58–61] will likely lead to breakthroughs in
quantum optimization. However, more simulations are needed
to guide the design of new machines.
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Appendix A: QA for combinatorial optimization problems

The quantum hardware employed consists of 144 unit cells
with eight qubits each, as characterized in Refs. [8, 62]. Post-
fabrication characterization determined that only 1097 qubits
from the 1152 qubit array can be reliably used for computa-
tion, as shown in Fig. 7. The array of coupled superconducting
flux qubits is, effectively, an artificial Ising spin system with
programmable spin-spin couplings and magnetic fields. It is
designed to solve instances of the following (NP-hard [63])
classical optimization problem: given a set of local longitudi-
nal fields {hi} and an interaction matrix {Jij}, find an assign-
ment s∗ = s∗1s

∗
2 · · · s∗N , that minimizes the objective function

E : {−1,+1}N → R, where

E(sC) =
∑

1≤i≤N

hisi +
∑

1≤i<j≤N

Jijsisj . (A1)

Here, |hi| ≤ 2, |Jij | ≤ 1, and si ∈ {+1,−1}. The sub-
script “C” is to emphasize that the spins are within the chimera
graph, and to differentiate these from the other two represen-
tations studied in the paper at the PUBO (sP) and QUBO (sQ)
level, respectively.

Finding the optimal set of variables s∗ is equivalent to
finding the ground state of the corresponding Ising classical
Hamiltonian,

Hp =

N∑
1≤i≤N

hiσ
z
i +

N∑
1≤i<j≤N

Jijσ
z
i σ

z
j , (A2)

where σzi is a Pauli z matrix acting on the ith spin.
Experimentally, the time-dependent quantum Hamiltonian

implemented in the superconducting-qubit array via

H(τ) = A(τ)Hb +B(τ)Hp, τ = t/ta, (A3)

with Hb = −∑
i σ

x
i the transverse-field driving Hamiltonian

responsible for quantum tunneling between the classical states
constituting the computational basis, which is also an Eigen-
basis of Hp. The time-dependent functions A(τ) and B(τ)
are such that A(0) � B(0) and A(1) � B(1). In Fig.8(a),
we plot these functions as implemented in the experiment. ta
denotes the time elapsed between the preparation of the initial
state and the measurement, referred to hereafter as the anneal-
ing time.

QA as an algorithmic strategy to solve classical optimiza-
tion problems exploits quantum fluctuations and the adiabatic
theorem of quantum mechanics. This theorem states that
a quantum system initialized in the ground state of a time-
dependent Hamiltonian remains in the instantaneous ground
state if the Hamiltonian changes sufficiently slow. Because
the ground state of Hp encodes the solution to the optimiza-
tion problem, the idea behind QA is to adiabatically pre-
pare this ground state by initializing the quantum system in
the easy-to-prepare ground state of Hb, which corresponds
to a superposition of all 2N states of the computational ba-
sis, and then slowly interpolating to the problem Hamiltonian,
H(τ = 1) ≈ Hp.

FIG. 7: Device architecture and qubit connectivity. The array of
superconducting quantum bits is arranged in 12 × 12 unit cells that
consist of 8 quantum bits each. Within a unit cell, each of the 4 qubits
on the left-hand partition (LHP) connects to all 4 qubits on the right-
hand partition (RHP), and vice versa. A qubit in the LHP (RHP) also
connects to the corresponding qubit in the LHP (RHP) of the units
cells above and below (to the left and right of) it. Edges between
qubits represent couplers with programmable coupling strengths. We
show only the 1097 functional qubits out of the 1152 qubit array.

In a realistic experimental implementation, the quantum
processor will operate at a finite temperature, and in addi-
tion to thermal fluctuations, other types of noise are unavoid-
able, leading to dissipation processes not captured in H(t).
Deviations from adiabaticity affecting the performance of the
quantum algorithm seem to be a delicate balance between the
quantum coherence effects and the interaction with the envi-
ronment, responsible for, e.g., thermal excitation (relaxation)
processes out of (into) the ground state [23, 64].

Determining the optimum value of ta is an important and
nontrivial problem in itself. To the best of our knowledge this
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question related to the scaling of ta in a noisy environment
is still largely unexplored, with progress only in the case of
canonical models [65]. From an experimental standpoint, the
main limitation is the limited size of the available quantum de-
vices, but now with new generation of devices with more than
2000 qubits the question is within reach in the case of syn-
thetic data sets [50]. Studying this question within the context
of real-world applications is now within reach. We will leave
this study for future work.

Appendix B: Methods

a. Simulated Quantum Annealing (SQA) — QMC sim-
ulations are performed using a variant of the continuous time
QMC algorithm [33], which we refer to here and in the main
text as SQA. We build clusters in the imaginary time direction
in the same way as done in Ref. [33]. However, because here
we study frustrated systems, we do not build clusters in the
spatial directions. To flip segments of finite imaginary time
extent, we use the Metropolis algorithm [66]. This algorithm
was also used in previous benchmark studies of the D-Wave
devices [12, 13].

In the SQA simulations we use a linear schedule. We fix
the diagonal interaction strengthB(τ) = 1 and vary the trans-
verse field strength as A(τ) = Γ0(1 − τ), where τ is the an-
nealing time and Γ0 is the initial transverse field strength; see
Fig. 8. We use different values of Γ0 for different problem rep-
resentations. Γ0 = 0.8 for PUBO, Γ0 = 1.6 for QUBO, and
Γ0 = 6 for instances on the chimera graph. These represen-
tations are referred as “P,” “Q,” and “C,” respectively, in the
main text. In addition, we also implement the A(τ) and B(τ)
annealing schedule used in the DW2X device, as depicted in
Fig. 8.

b. Estimation of the time-to-solution (TTS) — For
stochastic algorithms, the time-to-solution depends on the de-
sired confidence, i.e., the probability P required such that the
solver produces the target solution. For example, in all previ-
ous studies the level of certainty required from the solver was
99%, i.e., P = 0.99, and the relevant metric, denoted R99 is
the number of repetitions needed such that the probability that
the solution is found is at least once is 99%. Let us denote
by ps the success probability to obtain the target solution in a
single execution or repetition of the solver. Because the prob-
ability F of not observing the solution after RP repetitions is
F = (1 − ps)

RP = 1 − P , the number of repetitions R99

needed to obtain the desired solution with probability at least
99% is

R99 = d log(1− 0.99)

log(1− ps)
e. (B1)

Therefore, the time-to-solution (TTS) under this criteria is the
product of R99 times the time it takes to perform one execu-
tion or each repetition, trep:

TTS = trepR99. (B2)

For the DW2X, trep was set to the annealing time of 5 µs. For
SA, QMC, and PTICM, trep can be estimated as:

trep = tsuNMCSopt, (B3)

with MCSopt the optimal number of Monte Carlo sweeps
(MCS), i.e., the number of MCS that minimizes the TTS
and tsu the time it takes to make a MC spin update. In the
case of PTICM, the values of MCSopt include a factor of 120
coming from the 4 replicas and 30 temperatures considered
in our implementation. Additionally, we multiply by a fac-
tor of 1.2 to account an estimated 20% overhead coming from
other steps in the PT implementation and not present in SA,
such as swaps of configurations and cluster updates. Here
we optimize the TTS per instance to obtain the best scal-
ing for each algorithm. The computational effort of the al-
gorithm optimization of this procedure compared to optimiz-
ing over different annealing times as proposed in Ref. [13]
should yield comparable scaling results. We prefer this ap-
proach because it required the same computational effort as
analyzing the data at different annealing times and it provides
more reliable information on the intrinsic difficulty of each
instances. For example, in the limit of very large annealing
time, where all the instances have probability one, most in-
stances have the same computational effort and it is not possi-
ble to identify which instances are intrinsically harder. This is
related to the problem with reported DW2X scaling for small
instances, for which the minimum available annealing time is
greater than optimal. Note that ps is a function of the number
of MCS, in the same way that it is a function of the anneal-
ing time in the case of the DW2X. Therefore, we estimate
ps for different values for the number of MCS, calculate R99

and from the values considered we select the optimum. Since
one MCS involves N updates [67], with N the total number
of spins in the problem, then to calculate the computational
effort we need to multiply by N and by the effective time
it takes to perform and evaluate each of these updates. The
value tsu is different for each of the algorithms (e.g., SA vs
SQA) and for each of the different representations (QUBO,
PUBO, or chimera). The times estimated and used for the
case of the CCFD instances are: tSA/Psu = t

PTICM/P
su = 5.5 ns,

t
SA/Q
su = t

PTICM/Q
su = 3.42 ns, tSA/Csu = t

PTICM/C
su = 2.6 ns,

t
SQAls/P
su = 1.08µs, tSQAls/Q

su = 1.88µs, tSQAls/C
su = 1.81µs,

t
SQAdws/C
su = 48.8µs. These times were used for all figures

with the exception of Fig. 4 and Fig. 8. For the case of Fig. 4,
and to give the best performance for each data set, we opti-
mized for R99 as described above for every instance of each
of the CCFD and random spin-glass data sets. Given that all
the data sets were run with PTICM and under the same com-
putational resources, we plotted directly the wall-clock time
required after the aforementioned optimization of MCSopt.

To capture the computational scaling of SQA as a simulator
of a hypothetical quantum annealer [denoted as SQA(q)] we
used the same optimal values of MCSopt used for SQA but
we do not multiply by the factor of N . In this way we take
into account the intrinsic parallelism of quantum annealers.
The prefactor tsu is changed as well to an arbitrary constant
parameter, denoted tSQA(q) we can tune to make all the lines
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in Fig. 8 to have a similar TTS as that value obtained by the
DW2X device. The values used here were tSQA(q)ls = 5 ns
and tSQA(q)dws

= 1.3 ns.
Because the SAT-based solver described below is signifi-

cantly different from the other stochastic solvers mentioned
above, to estimate the TTS we run the SAT-solver 1000 times
per instance and compute the TTS for each run. From this
distribution of TTS values, we pick the 99% percentile as the
TTS value we report since it matches the definition of the
time needed to observe the desired solution

c. SAT-based solver tailored for CCFD — The SAT-
based model-based diagnosis solver is implemented as fol-
lows. First it adds a tree-adder to the fault-augmented circuit
to enforce the cardinality of the fault. Second, the formula is
converted to Conjunctive Normal Form (CNF). Finally, a SAT
solver is called n times, first for computing all zero-cardinality
faults, then for all single-faults, etc., until a fault of cardinality
n is found. For our implementation we have used the highly-
optimized SAT-solver LINGELING [56]. It is a deterministic
SAT-solver that uses Boolean search enhancements, includ-
ing symbolic optimization, occurrence lists, literal stack, and
clause distillation, etc.

d. DW2X programming details — When programming
a quantum annealer to solve real-world applications, the pro-
cess of minor-embedding introduces many other parameters
that do not exist when benchmarking QA with a random spin-
glass benchmark. One common misconception is that im-
plementing real-world applications is harder because of the
minor-embedding procedure. Although more efficient embed-
ding strategies are always desirable, we want to emphasize
here that it is not the main challenge when programming the
device since heuristic algorithms solve this problem reason-
ably well [45]. It is also important to note here that the NP-
hardness of finding the smallest minor-embedding (with re-
spect to number of qubits) is largely moot, because the small-
est minor-embedding is often far from optimal in terms of per-
formance. For example, from our experience, sometimes it
is preferable to have an embedding that uses more physical
qubits but that has shorter “chains” representing logical vari-
ables. In our work we generated 100 embeddings per instance
regardless of the problem size.

The main challenge (the curse of limited connectivity [68,
69] due to quantum annealers having a bounded number of
couplers per qubit) does not lie in the minor embedding prob-
lem, but rather in the setting of the additional parameters once
the minor-embedding has been chosen. Although proposals
exist to cope with this challenge [46, 70, 71], the optimal set-
ting of parameters is a largely open problem and one of the
most important ones affecting the performance of quantum
annealers as optimizers [46]. In this work, we use the strategy
proposed in Ref. [46] to set the strength JF of the ferromag-
netic couplers, which enforce the embedding, and for gauge
selection.

In addition to setting JF, we must also distribute the logical
biases {hi} and couplings {Ji,j} over the available physical
biases and couplings {h̃k} and {J̃k,l}. The key consideration
in parameter setting is the noise level of the programmable
parameters of the quantum device. The noise margin of the

D-Wave 2X machine is h̃j < 0.05 for biases and J̃k,l < 0.1
for couplers in a normalized, hardware-embedded problem,
with the difference due to the difference in dynamic range.

We aim to divide the logical parameters as much as possi-
ble over the corresponding physical parameters subject to this
precision limit using the following heuristic, which is similar
to but distinct from that of Ref. [71]. Consider a logical bias
hi that corresponds to Ni hardware qubits. If hi/Ni is greater
than the 0.05 noise threshold, then each physical qubit j is
given a bias h̃j = hi/Ni. If not, we consider the ni hard-
ware qubits within the chain that have nonzero inter-chain
couplings. If hi/ni is greater than the threshold, we evenly
distribute the logical bias amongst these ni physical qubits.
Finally, if neither of these strategies exceed the threshold, we
assign the logical bias completely to hardware qubits with
the lowest number of intra-chain couplings, breaking ties uni-
formly at random. The remaining hardware qubits within the
chain are given a bias of zero. We distribute the logical cou-
plers Ji,j in a similar way. Suppose that the chains for logical
qubits i and j have Ni,j physical couplers between them. If
Ji,j/Ni,j is greater than 0.1 (noise threshold), we evenly dis-
tribute the logical coupling amongst the Ni,j available physi-
cal couplers. Otherwise, the logical coupling is completely as-
signed to a single physical coupler uniformly at random from
the Ni,j options.

Appendix C: Mapping of minimal-cardinality fault diagnosis
for combinational digital circuits to PUBO and QUBO

In this section we describe in detail two mappings of the
fault diagnosis problem to QUBO, via a mapping to PUBO.
The original instance consists of a set of m gates, each with a
specified hard fault model. Excluding the inputs and outputs
to the circuit, let x = (xi)

n
i=1 ∈ {0, 1}

n indicate the value
on every wire in the circuit. For gate i, let yi ∈ {0, 1}∗ be
the values of the input wires and zi the value of the output
wire. These are not new variables but rather alternative ways
of referring to the variables x. For example, if wire i is the
output of gate j and the first input into gate k, then xi, zj ,
and yk,1 all refer to the same variable. Let gi(yi) ∈ {0, 1}
be the Boolean function indicating the action of gate i, and
Fi(yi, zi) ∈ {0, 1} be the predicate indicating whether the
combined input yi and output zi are consistent with the fault
model for gate i. Several examples for gi and Fi are given in
Tables I and II, respectively.

Bian et al. [29] have also used fault diagnosis as a test bed
for benchmarking novel techniques in QA. They used Satisfia-
bility Modulo Theory to automatically generate functions rep-
resenting the cost function and constraints, whereas here we
do so manually, as described in this section. Their approach
is further differentiated from the present one by their use of
problem decomposition and locally-structured embedding.

Note that we describe the mapping to pseudo-Boolean poly-
nomials over variables taking the values {0, 1}, while the
Hamiltonians in physical quantum annealers directly repre-
sent functions of variables taking the values ±1, i.e., Ising
spins. The two representations are equivalent with the follow-
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TABLE I: Example gates and their representation as polynomials.
For details see the main text.

Gate gi(yi)

OR yi,1 + yi,2 − yi,1yi,2
AND yi,1yi,2

XOR yi,1 + yi,2 − 2yi,1yi,2

EQ 1− yi,1 − yi,2 + 2yi,1yi,2

BUFFER yi,1

NOT 1− yi,1
NOR 1− yi,1 − yi,2 + yi,1yi,2

NAND 1− yi,1yi,2

TABLE II: Example fault models and their predicates as polynomi-
als. For details see the main text.

Fault model Fi(yi, zi)

Stuck at 1 zi

Stuck at 0 1− zi
Stuck at 0 or 1 1

Stuck at first input EQ(zi, yi,1)

Stuck at first input or 0 1− yi,1(1− zi)

ing transformation:

b = (1− s)/2, s = 1− 2b, (C1)

for b ∈ {0, 1} and s ∈ {±1}, with the latter being the con-
ventionally used for physical implementations on quantum an-
nealers, as in, e.g., Eq. (A1). Note that the substitutions leave
the degree and connectivity of the polynomials unchanged.

1. Explicit mapping

For each gate i, introduce an additional variable fi that
indicates whether or not that gate is faulty. Assuming that
f = (fi)

Ngates

i=1 is consistent with xi, the number of faults is
simply

Hnumfaults(f) =

Ngates∑
i=1

H
(i)
numfaults(fi) =

Ngates∑
i=1

fi. (C2)

The consistency with the fault model is enforced by the
penalty function

Hfaultset(x, f) =

Ngates∑
i=1

H
(i)
faultset(yi, zi, fi),

H
(i)
faultset(yi, zi, fi) = λ

(i)
faultsetfi [1− Fi(yi, zi)] .

(C3)

Finally, we must also constrain the system to the appropriate
behavior when there is no fault:

Hgate(x, f) =

Ngates∑
i=1

H
(i)
gate(x, f),

H
(i)
gate(yi, zi, fi) = λ

(i)
gate(1− fi)XOR[gi(yi), zi].

(C4)

The overall cost function is

H(x, f) = Hnumfaults(f) +Hfaultset(x, f) +Hgate(x, f)

=

Ngates∑
i=1

H(i)(yi, zi, fi),

(C5)

where

H(i)(yi, zi, fi) = Hnumfaults(fi) +Hfaultset(yi, zi, fi)

+Hgate(yi, zi, fi).

(C6)

Note that, in general, this function is quartic. Using two an-
cilla bits per gate, the usual gadgets [22, 72] can be used to
reduce this to quadratic as needed. Depending on the circuit,
some ancilla bits may be reused to reduce the degree of the
terms corresponding to more than one gate. For example, if
the input yi = (yi,1yi,2) to gate i happens to be the same in-
put to another gate j, then a single ancilla bit corresponding
to yi,1yi,2 may be used for both gates. In this work, we use
exactly two ancilla bits per gate, corresponding to the con-
junctions yi,1yi,2 and zifi.

The explicit mapping is easily extended to the case of ν > 1
input-output pairs. Instead of the single x, we have a copy xι
for each input-output pair, and use a single set of shared fault
variables f . Hnumfaults remains exactly the same as above,
while now there are copies of Hfaultset and Hgate for each
input-output pair:

H
(i)
faultset(yi, zi, fi) =

ν∑
ι=1

H
(i,ι)
faultset(yi,ι, zi,ι, fi),

H
(i,ι)
faultset(yi,ι, zi,ι, fi) = λ

(i)
faultsetfi [1− Fi(yi,ι, zi,ι)] ;

(C7)

and

H
(i)
gate(yi, zi, fi) =

ν∑
ι=1

H
(i,ι)
gate(yi,ι, zi,ι, fi),

H
(i,ι)
gate(yi,ι, zi,ι, fi) = λ

(i)
gate(1− fi)XOR [gi(yi,ι), zi,ι] ;

(C8)

where yi,ι and zi,ι are input and output bits for gate i in xι,
and yi and zi contain all ν copies thereof.

The explicit mapping is also easily extended further to the
case of µ > 1 fault modes. For each gate i, we use µ fault
variables fi = (fi,α)

µ
α=1, corresponding to the fault modes

(Fi,α)
µ
α=1. Considering fi =

∑µ
α=1 fi,α as a function of fi

(rather than a separate bit on its own), Hnumfaults and Hgate
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remain unchanged from the single-fault case, even with mul-
tiple input-output pairs. Now there are µ copies of Hfaultset:

H
(i)
faultset(yi, zi, fi) =

ν∑
ι=1

µ∑
α=1

H
(i,ι,α)
faultset(yi,ι, zi,ι, fi,α),

H
(i,ι,α)
faultset(yi,ι, zi,ι, fi,α) = λ

(i)
faultsetfi,α [1− Fi,α(yi,ι, zi,ι)] .

(C9)

Finally, to penalize situations in which more than one fault bit
is set per gate, we add

H
(i)
multfault(fi) = λ

(i)
multfault

µ−1∑
α=1

µ∑
β=α+1

fi,αfi,β . (C10)

So long as λ(i)multfault > νλ
(i)
gate, Hmultfault will outweigh the

potentially negativeHgate as needed. For each gate i, ν(1+µ)
ancilla bits suffice, corresponding to the conjunction of the
bits yi,ι for each input-output pair ι and to the conjunction
zi,ιfi,α for every ι and mode α.

When the fault modes considered are simply stuck at 1 or
stuck at 0, i.e. Fi(yi, zi) = Fi(zi) = zi or 1−zi, respectively,
we can use the alternative

H
(i,ι)
gate = λ

(i)
gate {1 + fi[1− 2Fi(zi,ι)]}XOR[gi(yi,ι), zi,ι],

(C11)
where fi =

∑µ
α=1 as before. When Fi is linear in zi, this

expression is quadratic in gi, zi, and fi, so that it suffices to
reduce gi to linear using a single ancilla bit corresponding to
the conjunction of the input bits yi. Overall, only ν ancilla
bits are needed per gate.

2. Implicit mapping

Having the fault bits f are not necessary. Here we show
how to construct the requisite energy functions using just the
wire bits x. Note that Hfaultset was used only to enforce con-
sistency of the fault bits with the wire bits, and so is obvi-
ated by the omission of the former. Recall that we would like
to find the assignment of values to the wires that minimizes
the number of faults while being consistent with the nomi-
nal gates and fault models. Therefore, we need a function
H

(i)
numfaults that is zero when zi = gi(yi) and is one when

zi 6= gi(yi) and Fi(yi, zi). Its behavior when zi 6= gi(yi)
and not Fi(yi, zi) only need be non-negative; penalizing that
case is left to Hgate. The following meets our needs:

Hnumfaults(x) =

Ngates∑
i=1

H
(i)
numfaults(yi, zi)

=

Ngates∑
i=1

Fi(yi, zi)XOR[gi(yi), zi].

(C12)

To penalize the case when the output zi of gate i is inconsis-
tent with the input yi but not in a way allowed by the fault

model, we use

H
(i)
faultset(yi, zi) = λ

(i)
gate[1− Fi(yi, zi)]XOR[gi(yi), zi].

(C13)
The overall energy function for each gate is simply

H(i)(yi, zi) = H
(i)
numfaults(yi, zi) +H

(i)
gate(yi, zi). (C14)

Each H(i) is cubic, and can be reduced to quadratic using a
single ancilla bit. As with the explicit mapping, in certain
cases a single ancilla may be shared among multiple gates.

For a single input-output pair, the implicit mapping natu-
rally generalizes to multiple fault modes, by considering a
combined fault mode that is the conjunction of the multiple
ones, i.e., using Fi = OR(Fi,1, . . . , Fi,µ). Some examples,
e.g., stuck at one or first input, are shown in Table II. This does
not apply to multiple input-output pairs because it does not en-
force that all copies are subject to the same fault mode. For
particular gates and sets of fault models, it is likely most effi-
cient to use a modification of the explicit mapping, as shown
for the stuck at 0 and stuck at 1 cases above.

3. Logical penalty weights

Without loss of generality, in this work we have chosen
only one penalty weight λ for both λ

(i)
gate, which penalizes

a mismatch between the input and output of a gate in the
absence of a fault, and λ

(i)
faultset, which enforces the fault

model. That is, λ(i)gate = λ
(i)
faultset = λ for all i. Setting

λ = Ngates + 1 suffices to guarantee that the global min-
ima correspond to a valid diagnosis, i.e., those solutions (x, f)
such that Hgate(x, f) = Hfaultset(x, f) = 0. Any valid diag-
nosis has energy H(x, f) = Hnumfaults at most Ngates, so
any violation of the constraints incurring a penalty at least
λ = Ngates + 1 yields a total energy greater than that of any
valid diagnosis.

A weaker condition to require of the penalty weight λ is
simply that the ground state of H is a valid diagnosis. That is,
an invalid state (i.e., one that violates at least one of the model
constraints) may have lower total energy than some valid state,
but not than a minimum-fault valid state. One simple upper-
bound on the minimum number of faults is the number of out-
puts, which thus also serves as a sufficient lower bound on λ.
In the case of the multiplier circuits with k-bit and l-bit inputs,
the length of the outputs in simply k + l bits, which is much
smaller than Ngates.

Nevertheless, a much lower value of λ may suffice in prac-
tice for a particular set of instances. It is desirable to use
the smallest λ possible, because when the coefficients of
the Hamiltonian are rescaled for a hardware implementation,
larger values of λ lead to higher precision requirements, which
may not be met by limited-precision devices. For the genera-
tion of the PUBO expressions in the circuits considered here,
up to mult8-8, we used a value of λ = 4, regardless of the
size of the circuit. With the help of the complete SAT-based
solver, we checked that, for all the instances studied here, this
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value sufficed to ensure that the ground state corresponds to a
valid diagnosis.

However, we did generate observations, not included in this
study, for which λ = 4 was insufficient. This was extremely
rare, from no such examples in the smaller circuits to at most
one in five hundred for the largest circuits. Because we used
the first hundred randomly generated instances for each size,
λ = 4 sufficed for every instance used; this was highly likely
though not guaranteed.

A more common event that we had to filter in the instance
generation was the appearance of random instances where the
minimal solution contains no faults. These are easy to elim-
inate since one can easily verify whether the output corre-
sponds to the multiplication of the inputs and therefore the
solution to our problem is trivial with a minimal fault cardi-
nality of zero. It is interesting to note that in diagnosis task
such instances are still valuable, since one considers not only
the minimal cardinality but also the runners up could provide
valuable information about the circuit. For example, it could
be the case that there is indeed a fault in the circuit but the out-
put observations still match the desired output, but the fault
can only be unmasked for example, by using another obser-
vation in the circuit. The problem of selecting the best inputs
to probe faults in circuits is another interesting NP-hard prob-
lems in its own. We focus here in the minimal cardinality case,
given an input/output pairs.

4. PUBO to QUBO reduction

The cost function of the CCFD problem is initially ex-
pressed as a pseudo-Boolean expression (i.e., PUBO) of de-
gree greater than two. We then transform the higher-degree
PUBO expression into a quadratic one by using a conjunction
gadget. The conjunction gadget introduces an ancilla bit qi,j
that corresponds to a conjunction of two bits qi and qj in the
PUBO, replaces all occurrences of the qiqj with qi,j , and adds
a penalty function so that in any ground state of the QUBO
expression the ancilla bit is appropriately set, qi,j = qiqj . We
use the penalty function [22, 72, 73]

Hancilla = δ(3qi,j + qiqj − 2qiqi,j − 2qjqi,j), (C15)

which is zero when qi,j = qiqj and at least δ otherwise, where
δ > 0 is the penalty weight. The penalty weight δ needs to be
large enough that states violating the ancilla constraint have
energy much larger than the ground energy of the original
PUBO expression, thus preserving the low-energy spectrum.
As with the logical penalty λ, we would like δ to be as small
as is necessary in order to minimize the precision needed to
implement the cost function on a hardware device. For each
logic gate in the CCFD problem, we determined that the fol-
lowing values to be best, as a multiple of the logical penalty
weight λ:

δAND = δOR = 2.5λ; δXOR = 2λ. (C16)

This controlled and optimized assignment of contraction
penalties per logic gate is one of the remarkable features of

this CCFD applications in contrast to others, where penalties
can not only be higher but also scale with the number of vari-
ables [22, 23]. In this case, the penalties are independent of
the circuit size.

Appendix D: SQA versus DW2X

Here we address in more details the question of whether
SQA has the same scaling as the DW2X device and the com-
parison of the two schedules used in the SQA simulations.
The linear schedule tends to underestimate the scaling expo-
nents for easy problems and small systems sizes, when the
required number of sweeps is small. This is because there
might not be enough QMC time to remove the segments in
the imaginary time direction that have different spin values.

For the DW schedule (dws) we cut the first 10% of the
schedule. First, the initial part of the D-Wave schedule is not
necessary because it is very easy to equilibrate QMC when the
transverse field strength is large enough. Second, that leads
to shorter simulation times as it takes roughly the same time
to run the first 10% of the schedule as to run the rest of the
schedule. This is because the SQA simulation time is roughly
proportional to the transverse field strength and, in the first
part of the schedule, the transverse field is largest. Strictly
speaking, one probably can cut more than 10% of the initial
schedule. One can also cut some fraction of the schedule at the
end, but that will not improve simulation times significantly.
However, that could lead to a different scaling for easy prob-
lems and small small problem sizes. This difference in scaling
then could be fictitious and it might even disappear for larger
systems sizes.

Therefore, it is difficult to make any conclusive statements
about the apparent difference in scaling and significant fur-
ther work is required to address this issue with more certainty.
Besides emphasizing that such comparison are not straight-
forward, these further simulations and parameter fine-tuning
is beyond the scope of this work.

Note that the two statements are not contradictory with
our statements about limited quantum speedup in Sec. III C.
If we had unlimited computational resources we expect the
SQA slopes to come smaller in value, while in the case of
the DW2X we expect that optimization of the annealing time
would lead to a larger slope values compare to the current
one. Although we declare the results of SQA vs DW2X in-
conclusive given the these two slopes might reach compara-
ble values, given the expectation for SQA towards improving
its scaling, these observation makes our claims about limited
quantum speedup even stronger.
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(a)

(c)

(b)

FIG. 8: (a) Details for the different annealing schedules used in
this work. Panels (b) and (c) show a comparison of the DW2X ex-
perimental results and SQA simulations of hypothetical QA devices
with a DW2X-like [SQA(q)dws] and with a linear annealing schedule
[SQA(q)ls]. Data points correspond to the median values extracted
from a bootstrapping analysis from 100 instances per problem size,
with error bars indicating the 90% confidence intervals (CI).

Appendix E: Qubit resources for numerical simulation and
experiments

(a)

(b)

(c)

FIG. 9: Qubit resources for each of the problem representation
[(a) PUBO, (b) QUBO and (c) chimera (DW2X)] considered in our
benchmarking study of the CCFD instances. Data points correspond
to the median values extracted from a bootstrapping statistical anal-
ysis from 100 instances per problem size, with error bars indicating
the 90% confidence intervals (CI).
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Appendix F: Intrinsic hardness of the CCFD instances compared to other random spin-glass problems

(a)

(c)

(b)

(d)

FIG. 10: Comparison of CCFD-based benchmark problems against other random spin-glass benchmark classes, at different percentiles. Data
points correspond to the specific percentile value extracted from a bootstrapping statistical analysis from 100 instances per problem size, with
error bars indicating the 90% confidence intervals (CI).
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Appendix G: Scaling analysis from the application-centric perspective
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FIG. 11: Scaling analysis from the application-centric perspective at different percentile levels. (a) 25th, (b) 50th, (c) 60th, and (d) 75th
percentile. Data points correspond to the specific percentile value extracted from a bootstrapping statistical analysis from 100 instances per
problem size, with error bars indicating the 90% confidence intervals (CI).
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Appendix H: Scaling analysis from the physics perspective

(a)

(c)

(b)

(d)

FIG. 12: Scaling analysis from the physics perspective at different percentile levels. (a) 25th, (b) 50th, (c) 60th, and (d) 75th percentile. Data
points correspond to the specific percentile value extracted from a bootstrapping statistical analysis from 100 instances per problem size, with
error bars indicating the 90% confidence intervals (CI).
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