
MODELING AND COMPILATION ASPECTS OF FAULT
DIAGNOSIS COMPLEXITY

Jurryt Pietersma Alexander Feldman Arjan J.C. van Gemund
Delft University of Technology

P.O. Box 5031
Delft, Netherlands NL-2600 GA

+31 (0)15 278 1935
{j.pietersma, a.b.feldman, a.j.c.vangemund}@tudelft.nl

Abstract - Model-Based Diagnosis (MBD) is a
promising approach for fast and accurate di-
agnosis of root cause of failure for complex
systems. Critical success factors in MBD are
accurate realism of the model and diagnostic
inference speed. Both success factors are in-
herently at conflict. In this paper we demon-
strate how to model system components that
are typically found in technical systems in a
qualitative approach, thereby limiting the need
for more variables as well as increased do-
main resolution. Furthermore we outline the
computational trajectory from model to diag-
nosis, in which we distinguish between (off-
line) model compilation to an intermediate rep-
resentation, and the subsequent (on-line) di-
agnosis step, based on actual observations.
We use the fuel system of an Airbus 330 and a
scenario based on a real-life incident as lead-
ing example. The results show that our frame-
work is well suited for qualitative models and
that these models provide a realistic represen-
tation and accurate diagnosis. From our re-
sults we conclude that the selected knowledge
representation can speed-up the diagnostic
process to up to two orders of magnitude.

INTRODUCTION*

For complex systems, fast and accurate diagnosis
of root cause of failure is a crucial aspect of op-
erational safety and a critical factor in reducing
system down-time. Model-Based Diagnosis

*
This work has been carried out as part of the TANGRAM

project under the responsibility of the Embedded Sys-
tems Institute. This project is partially supported by the
Netherlands Ministry of Economic Affairs under grant
TSIT2026.

(MBD) is a promising approach to reduce fault
diagnosis time and cost. It is an automated fault
diagnosis method based on first principles. With
this method the system health state is inferred
from a compositional, design-like system model
and observations of system inputs and outputs.
The model contains the relations between system
inputs, health state, and partial observable behav-
ior.

MBD has advantages over (automated) symptom-
based methods as design changes only require
equivalent changes in the model. In contrast, for
symptom-based methods failure symptoms may
become totally different, which would require ma-
jor overhaul of the symptom to root cause map-
ping. Moreover, diagnosis models can be partly
generated from existing engineering models.

Critical success factors in MBD are accurate real-
ism of the model and diagnostic inference speed.
Increasing model accuracy usually involves the
use of more system variables (components, sig-
nals) and increasing the domain resolution of
those variables, thereby increasing the size of the
model. As inference complexity is typically expo-
nential in the size of the model, both success fac-
tors are inherently at conflict.

In this paper we discuss both the modeling and
diagnostic inference aspects in MBD. With respect
to modeling, we demonstrate how to model sys-
tem components that are typically found in techni-
cal systems in a qualitative approach, thereby lim-
iting the need for more variables and increased
domain resolution. We also address the modeling
of dynamic behavior for these components.

With respect to inference, we outline the computa-
tional trajectory from model to diagnosis, in which
we distinguish between (off-line) model compila-
tion to an intermediate representation, and the
subsequent (on-line) diagnosis step, based on
actual observations. A speed-up of the diagnostic
inference can be achieved by compiling the model
into a knowledge representation that allows diag-
nostic queries to be answered in a time polyno-
mial to the size of the representation. In this paper
we address the following representations for Boo-
lean and finite integer (FI) problems: Well-formed
formula (Wff), Conjunctive Normal Form (CNF),
Disjunctive Normal Form (DNF), Ordered Binary
Decision Diagrams (OBDD), and semi-
decomposable Negation Normal Form (sdNNF).
Exploiting hierarchy is another potential source of
speedup. This can be used in both compilation [2],
[5] and run-time approaches [11].

The above issues are discussed in the context of
an MBD implementation based on the modeling
formalism LYDIA (Language for sYstems DIAgno-
sis) and associated toolset that have been devel-
oped specifically for this purpose [10]. The lan-
guage core is propositional logic, enhanced with a
number of syntactic extensions for ease of model-
ing. Currently, the toolset features a simulator and
a number of diagnosis tools, based on satisfiability
solving (SAT), conflict-directed search (CDA*)
[13], and hierarchical A* [7], [8], [11] solving.
Automatic model generation is currently supported
for a subset of Verilog and Netlists.

Apart from a number of specific, small examples
to feature specific aspects of our modeling ap-
proach and compilation techniques, the paper in-
cludes an elaborate case study, involving the Air-
bus 330 fuel system. The case study shows how
the system is modeled and diagnosed in the case
of the 2001 leakage incident as reported in [9] and
shows how MBD could have prevented the pilots
from taking the wrong actions.

The remainder of this paper is organized as fol-
lows. In Section II we demonstrate how to model
systems with LYDIA. In Section III we discuss the
Airbus 330 case study. In Section IV we present
the knowledge representations. In Section V we
measure the performance of these representa-
tions in a number of diagnostic experiments. Sec-
tion VI follows with the overall conclusions from
our work.

MODELING

We introduce the LYDIA language by modeling a
state-less valve system. In this example we also
develop a modeling method for time-dependent
behavior which we apply to model systems with
state.

Valve example

We model a valve as a component with an incom-
ing and outgoing flow. For a healthy valve, the
valve control variable determines the outgoing
flow. A true control variable implies an open valve
for which the outgoing flow is equal to the incom-
ing, and a false control variable implies a closed
valve for which the outgoing flow is zero, i.e.,
false,

control (flowOut = flowIn)

¬control ¬flowOut

which corresponds to the following Lydia code,

 flowOut = control ? flowIn : false;

In diagnosis the number of observations is typi-
cally limited. For this component, only the control
variable and the outgoing flow are observable.
Listing 1 shows the complete Lydia model in
which the valve behavior is dependent on the
health variable h.

The keyword system indicates the definition of a
component. Health variables, which are to be

solved by the diagnostic engine, are declared by
the attribute health. The attribute probability de-
clares an a priori probability which is used as a
search heuristic for the diagnostic inference, as
well as for the ultimate ranking of the inferred di-
agnoses, since observations usually admit multi-
ple diagnoses, as shown in the sequel. The attrib-
ute observable assigns those variables that are
observable.

Listing 1 LYDIA valve model.

system Valve (bool h, flowIn, flowOut, control)
{
 // variable attributes

attribute health (h) = true;
attribute probability (h) = h ? 0.99 : 0.01;
attribute observable (flowOut,control) = true;

 // valve model: control=true implies open valve
if (h) {flowOut = control ? flowIn : false;}

}

Since flowIn is not observable the only exclusive
fault that can be detected is that of a leaky valve.
The observations for this fault are control = false
and flowOut = true which is only consistent for h =
false. For all other observations h = false and h =
true are both consistent, which illustrates that lim-
ited observability typically leads to limited diag-
nosability (multiple/ambiguous diagnoses).

As in many systems, components share connec-
tions which can be sensed for better diagnostic
reasoning. Consider a system of two identical,
parallel valves as depicted in Figure 1. The LYDIA

model is given in Listing 2.

Both valves are fed with the same ingoing flow. If
we observe that both valves are commanded
open (control1=control2=true) while only valve two
has outflow (flowOut1 = false, flowOut2 = true) we
obtain the following diagnoses,

1. h1=false h2=true

2. h1=true h2=false

3. h1=false h2=false

Diagnosis 1 and 2 are equally probable, while di-
agnosis 3 (double fault) is much less probable.
However, the second diagnosis does not repre-
sent expected physical behavior as h1 = true im-
plies flowIn = flowOut1= false which implies that
the second valve would have a failure that spon-
taneously generates flow. To exclude this non-
physical behavior from the model we need to ex-
tend it as follows,

if (not(flowIn)) {not(flowOut);}

Now the diagnosis reduces to either a single fail-
ure of valve 1 or a double failure of both valves,
corresponding to the expected physical behavior
of the (failed) system.

We can also improve the diagnosability of a sys-
tem by expanding a model and observations in
time. We revert back to the single (extended)
valve model and assume that during a specific
time horizon the input flow is constant. Let flow-
Out[k] denote the value of flowOut at the discrete
time step k. If we observe control = true, flow-
Out[1] = true, flowOut[2] = false then the valve
must be broken at k = 2.

Systems with state

We can also apply this temporal extension to sys-
tems with state. Consider a D-flip-flop as shown
partially in Listing 3. For this system the output o
at a certain time step k depends on the input i at k
- 1. Consider the observations in Table 1. The
diagnosis (last column) is correctly inferred be-
cause of the temporal relations between the ob-
servations.

A similar example is that of a robot arm. Due to
space limitations we will only discuss the reason-
ing and not show the listing or the results. The
arm holds a block, the position of which is meas-
ured by a sensor. A typical intermittent failure
would be a sensor indicating the position of the
block going from high to low and back to high
again. If correctly modeled, the physical con-
straints ensure that a block does not spontane-
ously change position from low to high. This al-

Figure 1 Two valves system.

Listing 2 LYDIA model of two valves.

#include "valve.sys"

system twoValves (
bool h[1:2], flowIn, flowOut[1:2], control[1:2])

{
system Valve valve[1:2];

forall (i in 1 .. 2) {
 valve[i] (h[i], flowIn, flowOut[i], control[i]);
 }
}

observations h
t i r s o

1 true false false false true
2 true false false false true
3 true false true true true
4 true false false true true
5 true false false false false

Table 1 D-flip-flop observations and
single fault diagnosis.

Listing 3 LYDIA model of a D-flip-flop.

system DFlipflop (bool s[0:1], r[0:1], i, o[0:1])
{
...

 sEvent=(!s[0] and s[1]);
 rEvent=(!r[0] and r[1]);

 if (h) {
 /* reset takes precedence */
 if (rEvent) {o[1]=false;}
 if (sEvent and !rEvent) {o[1]=i;}
 if (!sEvent and !rEvent) {(o[1]=o[0];}
 }
}

system DFlipflopTime ()
...
forall (k in 1..5) {

 dff[k](s[k-1:k], r[k-1:k], i[k], o[k-1:k]);
...

lows LYDIA to correctly infer that the sensor must
be broken. Note that it is also possible to assign a
health condition for the assumption of physical
behavior, in this case gravity.

AIRBUS 330 CASE STUDY

As a modeling example we use the fuel system of
the Airbus 330 aircraft. Figure 2 shows its sche-
matics. The composition of the model is deter-
mined by the level of detail we need to obtain in a
system diagnosis. We assume that identifying one
or more of the field-replaceable components in
Figure 2 is adequate for this purpose, therefore
this schematic dictates the topology of the model.

Next, we need to determine the proper system
variables to be modeled. For this, the main func-
tionality of the system is used as guidance. The
main function of the fuel system is to provide an
uninterrupted supply of fuel to the engine. This
supply should have a specific quantity and should
be controllable by the pilot. Hence, we choose fuel
mass and its derivative fuel mass flow, as leading
system variables. These variables are influenced
by all system components. This influence is par-
tially controllable and measurable.

As example we discuss the engine component
listed in Listing 4. In this listing we also see the
use of type to define new variable types, enum to
define variables with a FI domain, and struct to
define structures. An engine is considered healthy
if it is running when it is turned on (control vari-
able) and there is nominal flow of fuel going into
the engine. The side variable determines whether
this engine is mounted on the left side (false) or
on the right side (true). The mass flow direction v
has to correspond to this.

The behavior of the other components is defined
in a similar fashion. All components are used in a
top-level system model. This is where the compo-
nents are instantiated and the model topology is
created by sharing the variables between compo-
nents. For this particular case study it is not nec-
essary to reason about the system across time,

thus for this model we do not use the temporal
extensions as discussed earlier.
We consider the failure scenario as described in
[1] and [9]. In this incident a leak near the right
engine causes the following symptoms 1) a low oil
temperature due to the increased flow rate
through the right heat exchanger, and 2) a fuel
imbalance between the left and right wing, initially
compensated by a fuel flow from the trim tank.
The pilots fail to combine these symptoms into a
single root cause of failure. Instead they blame
the problem on a broken oil temperature sensor
and fail to take into account the fuel imbalance. As
a result of this they did not close the cross feed
valve thereby allowing more fuel to leak than nec-
essary which aggravated the problem. Ultimately
the fuel runs out causing a flame out in both en-
gines. Fortunately the pilots manage to safely land
the plane by gliding it to the runway.

Table 2 shows the different phases in the incident,
the accompanying values of the relevant observa-
tions, and the best, i.e., computed as most prob-
able, diagnosis of the relevant components as
inferred by LYDIA. In total there are 51 observable
variables and 46 components each with its own
health variable. In the nominal flight condition
there is a nominal fuel supply to the engines and
the trim tank is not transferring any fuel. The best
diagnosis is indeed the nominal diagnosis, which
means that besides the right heat exchanger and
engine all other components are also healthy.

Figure 2 Schematics of the fuel system of

the Airbus 330 [12].

The leak manifests itself at the other phases. Ini-
tially the fuel loss is compensated by an automatic
fuel transfer from the trim tank, this is shown in
the second value column LOW+AUTO. In this par-
ticular phase the flow from the trim tank compen-
sates the higher outflow of the right wing tank,
hence masking the higher fuel consumption due
to the leakage. Only the low temperature of the oil
in the right heat exchanger indicates a problem. At
this phase, the diagnosis agrees to the diagnosis
as inferred by the pilot, i.e., a failure of the heat
exchanger temperature sensor. However as soon
as the trim tank is unable to compensate, the fuel
flow from tank increases to high (third value col-
umn, LOW+AUTO+LOSS). This affects the diag-
nosis, as the combination of an increased flow
fuel rate and low oil temperature can not be
caused by a single failure of the heat exchanger.
Instead, the right engine is diagnosed to be the
only single, and hence most likely, root cause of
failure. The fourth column takes into the account
the pilot action of opening the cross feed valve,
which neither mitigates the problem nor affects
the diagnosis.

Similarly to the valve example the correct diagno-
sis is inferred by combining multiple observations
of interlinked system components. Though the
flow through the fuel lines is not directly available
as observation, LYDIA correctly reasons that a
high flow rate out of the right tank and a high flow
rate through the right heat exchanger can be con-
sistently combined into a single root cause. LYDIA

correctly identifies this root problem as a single
failure in the right engine section, i.e., a false
value for REngine corresponding to h in Listing 4.

COMPILATION

In this section we discuss the process of comput-
ing diagnosis by using the LYDIA framework. For
brevity we omit the diagnosis formalism [4] and
sketch through some of the computational aspects
of compilation. The illustration of this process is
done with the Lydia toolkit, which contains a com-
piler, a number of preprocessing and transforma-
tion tools and several diagnostic engines. Due to
space constraints these algorithms are not dis-
cussed here.

In order to perform diagnosis on a LYDIA model it
is enough to translate it to a well-formed proposi-
tional formula (Wff) and to use an entailment
mechanism for finding those diagnoses which are
consistent with the system description and the
observations, i.e., the diagnoses that explain the
observations in terms of the health state of that
system. The language is designed in such a way
as to facilitate a conversion to a propositional Wff
in polynomial time. This includes the normal lan-

observation phase
 NOM LOW LOW LOW
 AUTO AUTO AUTO
 LOSS LOSS
 X

LInletV false true true true
RInletV false true true true
fRTank.m nom nom high high
xFeedV false false false true
ROil nom low low low
fTrim.m zero nom nom nom
trimPump false true true true
trimIsolV false true true true

diagnosis

RHeatExch true false true true
REngine true true false false
other true true true true

condtion description

NOM nominal flight conditions
LOW low oil temperature
AUTO automatic forward transfer, fuel

transfer from trim tank to wing
LOSS fuel loss in right wing
X cross feed open

Table 2 Incident phases, conditions, rele-
vant observations, and best diagnosis for

the Airbus 330 case study.

Listing 4 LYDIA model of the Airbus 330
engine.

/* mass type */
type Mass = enum {zero, low, nom, high};

/* one dimensional flow has size m and
direction v (false = -, true = +) */
type Flow = struct {Mass m, bool v};

/* Engine: model of engine.
Incoming nominal flow with engine switched on
implies running engine and vice versa.*/

system Engine (Flow flow,
 bool side, engineOn, engineRunning)
{
 ...

 if (h) {if (engineOn) {
 engineRunning =
 ((flow.v=side) and (flow.m = Mass.nom));
 }}
}

guage parsing, type-checking, expanding arrays
and array quantifiers and processing of variable
attributes.

The LYDIA language supports variables both in the
Boolean and FI domains. The toolkit supports two
approaches for unifying this – encoding FI vari-
ables as Booleans and vice-versa [6]. Encoding FI
into Boolean is trivial and we will not discuss it for
brevity. Working directly in the FI domain is a pre-
ferred option as it offers speed-ups of up to two
orders of magnitude [6]. This approach has also
been taken in the Airbus case study.

Up until now, we have discussed the compilation
of the original model to a Boolean or FI Wff. As
this is the conjunction of each system’s Wff the
actual hierarchy is preserved in this representa-
tion. This introduces the notion of hierarchical sys-
tem, which will allow us to perform faster reason-
ing compared to algorithms working on “flat” rep-
resentations

1
 [7]. A hierarchical system descrip-

tion is a break-up of the system description into
small partial system descriptions that are organ-
ized in a hierarchical structure with one system
description at the highest hierarchy level. Similar
to the hierarchical Wff representations, the intro-
duction of hierarchical system descriptions allows
us to define hierarchical CNF and hierarchical
DNF (the latter is not DNF anymore but is a re-
stricted form of Negation Normal Form). We call
this hierarchical DNF semi-decomposable Nega-
tion Normal Form (sdNNF). A hierarchical system
is simply a conjunction of Boolean or FI Wff. It is
possible to discard this information (i.e., to flatten
out the hierarchy) and to continue transforming
the Wff in its flat representation.

Instead of completely flattening a hierarchical sys-
tem as would be the case in traditional diagnosis,
we selectively apply compilations on subsystems
of system descriptions. The need to exploit hierar-
chy stems from the inherent high-computational
price of MBD. By exploiting the hierarchical infor-
mation and selectively compiling parts of the
model it is possible to increase the diagnostic per-
formance and to trade cheaper preprocessing
time for faster run-time reasoning. Our hierarchi-
cal algorithm, being sound and complete, allows
large models to be diagnosed, where compile-
time investment directly translates to run-time
speedup. Furthermore LYDIA repartitions and
coarsens the original model in an attempt to

1

For brevity, we refer to the classical diagnosis ap-
proach as “flat”, i.e., non-hierarchical.

minimize the subsystem connectivity, a process
which leads to faster run-time fault diagnosis at
the price of some pre-processing time. The algo-
rithms implementing this are an important part of
the reasoning tool-kit.

The reasons for the different compilation routes
are three-fold. First, we need to reach logically
equivalent representation which allows us to
cross-validate the correctness of the tools. The
implementation of other state-of-the-art tech-
niques (like CDA* [13]) allows us to verify the final
diagnostic result and to compare the diagnostic
performance under fair conditions. Finally, and
most importantly, almost any translation causes
combinatorial explosion with some models. Mod-
els or sub models, depending on different charac-
teristics (e.g., implicit or explicit fault modeling,
etc.) can produce very different compilation re-
sults. More precisely, there are Boolean functions
which have linear OBDD representation, but ex-
ponential irreducible CNF. Therefore it is benefi-
cial to choose different representations for differ-
ent models and parts of models. Full complexity
analysis for all representations is impossible due
to lack of space in this paper but is available in [3].

EXPERIMENTS

We demonstrate the effect of the different knowl-
edge representations experimentally by diagnos-
ing the example models discussed in the previous
sections. Table 3 shows the resulting diagnosis
time in milli-seconds. The model’s number of
health variables is represented by N. The diagno-
ses are inferred for a nominal and a failure sce-
nario corresponding to the failures that were dis-
cussed earlier. In general we can conclude that
for small example models the sdNNF is faster,
with the D-flip-flop as notable exception. This
speed-up comes at an investment in compilation
time and size. For the large Airbus example we
were unable to compile the sdNNF representa-
tions. The most dramatic speed-up is provided by
FI representation of the Airbus model. In fact, the
Boolean representation does not yield a diagnosis
on a reasonable time scale.

The effect of the hierarchical preprocessing step
on the diagnosis time is shown in Table 4. The
three representations on which we perform diag-
nostic search are constructed as follows. The
sdNNF/H models are the original high-level IS-
CAS-85 models converted to sdNNF (with tree

depth d). By partially flattening to a depth d-1 we
obtain sdNNF/P1 and by flattening to d-2 we ob-
tain sdNNF/P2. By partial, compile-time flattening
to sdNNF/P1, we gain run-time speed-up by a
factor varying from 2 to 5.6 and with the deeper
flattening to sdNNF/P2 the speed improvement
varies from 2.9 to 12.3. For this improvement in
speed we pay the price of increasing the repre-
sentation size in comparison to the original
sdNNF/H. The speed of the run-time search is
determined by the depth and the quality of partial
flattening, which depends on the original hierar-
chy. The sdNNF/H representations of the ISCAS-
85 circuits, however, are obtained by sequential
splitting of large nodes to prevent explosion in the
size of the partially flattened sdNNF. This naive
partitioning is the reason for the limited speedup
in diagnosis time.

CONCLUSIONS

In this paper we have discussed how to qualita-
tively models systems in LYDIA for the purpose of
MBD and how the complexity of these models
affects the knowledge representations and the
diagnostic inference time. Our results show that
LYDIA provides a good framework for qualitative
models and that these models provide a realistic
representation and accurate diagnosis. This also
holds for dynamic systems and in real world sce-
narios such as the Airbus 330 incident. From our
results we conclude that the selected knowledge
representation has a major influence on the diag-
nostic inference speed-up. Automatic selection of
the optimal representation is subject of ongoing
research.

REFERENCES

[1] http://www.rvs.unibielefeld.de/publications/compen
dium/incidents_and_accidents/airtransat236.html.
[2] Adnan Darwiche, “Model-based diagnosis using
structured system descriptions,” JAIR, vol. 8, 1998, pp.
165–222.
[3] Adnan Darwiche and Pierre Marquis, “A knowledge
compilation map,” Journal of Artificial Intelligence Re-
search, vol. 17, 2002, pp. 229–264.
[4] Johan de Kleer, A. K. Mackworth and R. Reiter,
“Characterizing diagnoses and systems,” Artificial Intel-
ligence, vol. 56, 1992, pp. 197– 222.
[5] Yousri El Fattah and Rina Dechter, “Diagnosing tree-
decomposable circuits,” in IJCAI’95, 1995, pp. 1742–
1749.
[6] A. Feldman, J. Pietersma and A.J.C. van Gemund,
“A multi-valued SAT-based algorithm for faster model-
based diagnosis,” in Proc. DX-06, June 2006.
[7] A. Feldman and A.J.C. van Gemund, “A two-step
hierarchical algorithm for model-based diagnosis,” in
Proc. AAAI’06.
[8] A. Feldman, A.J.C van Gemund and A. Bos, “A hy-
brid approach to hierarchical fault diagnosis,” in Proc.
DX-05, June 2005, pp. 101–106.
[9] Government of Portugal Gabinete de Prevenção e
Investigação de Acidentes com Aeronaves, “Accident
investigation final report: Airbus 330-243 available at
www.gpiaa-portugal-report.com,” October 2004.
[10] http://www.fdir.org/lydia/
[11] Gregory Provan, “Hierarchical model-based diag-
nosis,” in Proc. DX’01, 2001.
[12] “Red triangle productions airbus a330.” http://www.
redtriangle.com.
[13] Brian Williams and Robert Ragno, “Conflict-
directed A* and its role in model-based embedded sys-
tems,” Journal of Discrete Applied Mathematics, 2004.

model N search time [ms]
 nominal failure
 F H F H

valve 1 0.55 0.29 0.23 0.10
2Valves 2 0.98 0.59 0.64 0.26
valveExt 1 0.47 0.28 0.22 0.10
2ValveExt 2 0.98 0.58 0.64 0.26
valveT 2 0.99 0.60 0.68 0.35
valveTExt 2 0.98 0.62 0.68 0.27
D-flip-flop 5 2.54 15.72 2.37 10.77
robotArm 12 1.19 0.43 3.29 0.43
A330 Bool 46 44930 - - -
A330 FI 46 200 - 390 -

Table 3 Diagnosis performance for CNF
(F) and sdNNF (H) representations of the

example models.

circuit N diagnosis time [ms]
 sdNNF/H sdNNF/P1 sdNNF/p2

74182 19 0.56 0.28 0.15
74283 40 1.41 0.40 0.30
74L85 41 1.28 0.65 0.45
74181 62 17.97 3.43 1.46
c432 146 61.27 10.93 10.00
c499 202 12.22 3.55 3.84
c1908 252 20.61 7.17 4.75
c880 383 38.44 12.43 4.51
c1355 514 102.34 40.04 16.36
c2670 983 981.73 333.20 111.47
c3540 1297 871.21 413.96 187.32
c5315 2202 23172.46 6786.24 2796.49
c6288 2416 1453.99 450.89 123.38
c7552 3024 4264.19 1533.95 746.96

Table 4 Diagnosis time of sdNNF represen-

tations for the benchmark suite models.

