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Abstract—Multi-level logic synthesis is a problem of immense
practical significance, and is a key to developing circuits that
optimize a number of parameters, such as depth, energy dissi-
pation, reliability, etc. The problem can be defined as the task
of taking a collection of components from which one wants to
synthesize a circuit that optimizes a particular objective function.
This problem is computationally hard, and there are very few
automated approaches for its solution. To solve this problem
we propose an algorithm, called Circuit-Decomposition Engine
(CDE), that is based on learning decision trees, and uses a greedy
approach for function learning. We empirically demonstrate that
CDE, when given a library of different component types, can
learn the function of Disjunctive Normal Form (DNF) Boolean
representations and synthesize circuit structure using the input
library. We compare the structure of the synthesized circuits with
that of well-known circuits using a range of circuit similarity
metrics.

I. INTRODUCTION

Logic (or Boolean Function) Synthesis is a well-known

problem, and is a key to developing circuits that optimize

a number of parameters, such as depth, energy dissipation,

reliability, etc. The problem can be defined as the task of

taking a collection of components from which one wants

to synthesize a circuit that optimizes a particular objective

function. This problem has been addressed since Roth [1].

Circuit synthesis is related to, but strictly more general than,

Boolean minimization, on which there has been significant

work (e.g., using the Quine-McCluskey method [2]). Rather

than being given a function to optimize, we must jointly create

the function and optimize it; in addition, we may want to

address many other tasks in the synthesis process; such tasks

include (1) optimize properties beyond just the number of

gates that Boolean minimization addresses (e.g., circuit area,

depth), (2) add components not present in the given function,

and (3) design nested hierarchical structures in the device.

We aim to automate the process of generating circuits from

component libraries. We propose a machine learning approach.

Prior work has used genetic algorithms, which do not converge

well [3], [4]. We adopt a decision tree approach, and in

particular, an iterative greedy algorithm that adds the most

efficient component in terms of model size. Our approach is

not restricted by a pre-defined library of component types but

uses a library that can dynamically grow, and thus keeps the

model size small.

Our approach has several important applications.

• In reverse engineering, engineers can shorten the pro-

cess of revere-engineering. For instance, automating this

process could significantly reduce the time duration of

unveiling key systems; e.g., it could emulate the reverse

engineering of the ISCAS-85 benchmarks [5].

• In model-based synthesis, automating the process of

Boolean function synthesis is needed for model-based

systems. The existence of a model is a basic requirement

for model-based systems. Unfortunately, in many cases

such a model does not exist. We believe that automating

the process will facilitate the design of model-based

systems and will able to use techniques from model-based

diagnosis [6], model-based prognostics [7] and model-

based problem solving [8].

• In model-based diagnosis, this approach can take a sys-

tem function and optimize its diagnostics properties, e.g.,

diagnosability, fault tolerance, failure probability, etc.

Our contributions are as follows. We propose a novel ma-

chine learning approach for Boolean function decomposition

for the case of multi-level logic synthesis. We propose re-

verse engineering of Boolean formulas rather than addressing

designing problems. We cope with multiple output functions

rather than a single output. We implement a method that

uses a library of different component types which can be

dynamically increased with new types of components. Finally,

our algorithm is empirically evaluated through various of

circuits.

II. RELATED WORK

This section compares our work to prior research in a range

of different areas, including Boolean optimization, function

learning, and synthesis.

The task of composing a model from components to achieve

a goal function is known in the electrical and computer

engineering literature as logic synthesis. Logic synthesis is

a process for converting a high-level specification of circuit

behavior, typically register transfer level (RTL), into a design

implementation, which can be represented in terms of logic

gates.

In general, there are two kinds of logic synthesis: two-

level and multi-level. In two-level logic synthesis the goal

is to represent a Boolean function by at most two gate

levels between a primary input and a primary output. This

can be achieved by representing the function as a DNF (in

terms of the engineering literature: sum of products). Known

methods for this task are Quine-McCluskey [2] to compute

the exact prime implicants of the goal formula and heuristic



methods like ESPRESSO [9] which compute near-minimal

prime implicants.

In multi-level logic synthesis there is no restriction on the

number of gates between a primary input and a primary output.

Actually, most circuits in real life are multilevel. Multiple

levels of gates increase the complexity of logic synthesis

dramatically, so exact solutions are not practical. There are

many methods to reduce a logic formula to multi-level logic.

Some of the methods use only primitive gates as AND, OR

and NOT, like algebraic logic optimizations and Boolean logic

optimizations [10].

Finally, Feldman et al. [11] present a new related problem

to ours. They have implemented a General Redesign Engine

(GRE), which uses model-based reasoning techniques and

Boolean functional synthesis from component libraries, to

automate redesign for combinational circuits. For the logic

synthesis they consider fault tolerance optimization which

reduces the probability of catastrophic failures. Feldman et al.

do not implement a machine learning approach but a brute-

force approach.

III. CONCEPTS AND DEFINITIONS

We start by presenting a set of definitions that are designed

to facilitate the exposition of algorithms for automated rea-

soning.

Figure 1 shows an implementation of a full-adder, rep-

resented by the function F (i1, i2, ci) = (q ⇔ i1 ∧ i2) ∧
(p⇔ i1 ⊕ i2) ∧ (Σ⇔ p⊕ ci) ∧ (co ⇔ q ∨ (p ∧ ci)).
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Fig. 1. This full-adder is used as a running example.

Definition 1 (Component): A component COMP, 〈F , IN,

OUT〉, is specified using a Boolean function F over a set of

variables Z , and input/output variables, IN, OUT ∈ Z .

Boolean functions that model components are often repre-

sented graphically, by using the same symbols as in a stan-

dard computer arithmetic schoolbook [12]. Figure 2 shows a

component that implements a three-input AND gate by using

two two-input ones. The Boolean function that is shown in

Fig. 2 is F (i1, i2, i3) = (o⇔ z ∧ i3) ∧ (z ⇔ i1 ∧ i2) where

IN = {i1, i2, i3}, OUT = {o}, and z is an internal variable.

We may omit specifying which variables are input and output,

when that is clear from the context or from the common use

(of an AND gate, for example).

Definition 2 (Component Library): A component library L
is defined as a set of components.

Figure 3 shows a component library consisting of a half-adder,

a two-input OR gate and a two-input NAND gate. In our
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Fig. 2. A component that implements a three-input AND function by using
two two-input AND gates

problem formulation, there are no restriction on the contents of

the component library, i.e., it is a set of arbitrary multi-output

Boolean functions. It is not necessary for a component library

to contain a functionally complete subset of components (the

two-input NAND gate in the component library shown in

Fig. 3, for example, can be used to express any Boolean

function, but that is not a requirement in our framework).
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Fig. 3. A component library consisting of (a) a half-adder (HA), (b) a
two-input OR gate (2-OR), and (c) a two-input NAND gate (2-NAND)

Definition 3 (System Description): A system description

SD, 〈L, G〉 is defined as a vertex-labeled and edge-labeled di-

rect acyclic graph G = 〈V, E〉 such that V = {PI ∪ PO ∪ V ′}
and if v ∈ V ′, then v ∈ L.

System description graphs contain a set of primary input

vertices (PI), a set of primary output vertices (PO) and a

vertex for each component. The graph edges are labeled with

the names of the Boolean function variable names.

Figure 4 shows a system description of the full-adder circuit

shown in Fig. 1, built from components drawn from the Fig. 3

library.
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Fig. 4. System description of the full-adder circuit shown in Fig. 1

A system description SD is equivalent to exactly one

Boolean function as shown in the following definition.

Definition 4 (Composition): Given a system description

SD = 〈L, G〉, G = 〈V, E〉, a composition C(SD) of SD
is a Boolean function (f1 ◦ · · · ◦ fn)(x1, . . . , xm) such that

n = |V | − |PI| − |PO| and for each fi ∈ {f1, . . . , fn}, there

is an isomorphic function f ′

i ∈ L. The primary inputs and

primary outputs of f1, . . . , fn are the respective edge labels

in G and the internal variables in f1, . . . , fn are unique.

In the above definition the variables {x1, . . . , xm} are all

internal variables, i.e., {x1, . . . , xm} = V \ {PI ∪ PO}.
The composition of the system description in Fig. 4, for

example, is a Boolean function that is composed of two half-



adders, and a two-input OR gate. The i1 and i2 inputs of

the half-adder in the component library shown in Fig. 3 are

renamed to p and ci for one of the instances.

Definition 5 (System Decomposition): Given a component

library L and a Boolean function S, a system decomposition

S−1 of S is a system description SD = 〈L, G〉 such that

S ≡ C(SD).
By equivalent function we mean that, since S and C(SD)
have the same primary inputs and primary outputs, a valuation

φ(S) = 1 iff φ(C(SD)) = 1. Note that the problem of comput-

ing if two Boolean functions are equivalent is computationally

very hard.

Computing decompositions of a given Boolean function is

the main problem discussed in this paper. Certain decompo-

sition are preferable, i.e., these minimizing some optimality

criterion such as number of elementary functions (number

of internal nodes in the resulting system description), a cost

function, etc. In this paper, the optimality criterion minimizes

the number of nodes in G.

IV. CIRCUIT DECOMPOSITION ALGORITHM

Algorithm 1 shows the main system decomposition method

of this paper. The basic idea of Alg. 1 is to greedily “carve-out”

component instances, starting from some subset of the primary

inputs and moving toward the primary output. Alg. 1 works

on single-output Boolean functions only. The input function

should be given in a Disjunctive Normal Form (DNF). The

core of Alg. 1 is constructing multiple decision trees, one for

each component instantiation candidate added to a reduced

representation of the target Boolean function. A component

instantiation is selected if it minimizes the depth of the

decision tree.

Algorithm 1: Circuit Decomposition Engine (CDE)

Input: S, a Boolean function in DNF

Input: L, a component library

Result: a system description

1 〈T, IN, OUT〉 ← MAKETABLE(S);
2 repeat

3 foreach 〈F, CIN, COUT〉 ∈ L do

4 foreach X ∈ SUBSETSOFSIZE(IN, |CIN|) do

5 Z ← F (X);
6 T ′ ← ADDINTERNAL(T, Z);
7 CT← TREEINDUCER(T ′);
8 f⋆ ← EVALUATE(CT);
9 if f⋆ < f then

10 〈f⋆, Z⋆, CT⋆〉 ← 〈f, Z, CT〉;

11 〈T, IN, OUT〉 ← UPDATETABLE(T, Z⋆);

12 until DEPTH(CT⋆) > 2;

13 return MAKESYSTEMDESCRIPTION(CT⋆)

Table I shows the output of MAKETABLE (line 1) for the

full-adder function shown in Fig. 1. Each column in T (in the

TABLE I
TRUTH TABLE OF THE FULL-ADDER SHOWN IN FIG. 1

IN OUT

ci i1 i2 co Σ

False False False False False

True False False False True

False True False False True

True True False True False

False False True False True

True False True True False

False True True True False

True True True True True

running example T is initially constructed from Table I) is an

attribute and this table is a partial specification of the system

description and a full representation of the target Boolean

function. Each attribute (column) represents a primary input, a

primary output, or an internal variable. Note that each internal

variable is also the output of a component and the name of

this component can be specified in the name of the internal

variable.

The main idea of Alg. 1 is to maintain a front of unused

input or internal variables and to try all possible components

from the component library. This front is initially constructed

from all primary inputs contained in IN and later maintained

in the same set of variables. Line 3 of Alg. 1 tries to

use each component from the component library. Let the

component chosen in line 3 has k = |CIN| inputs. These k

inputs are attempted to be connected to any k-subset of the

variables in the set IN. These subsets are generated by the

SUBSETSOFSIZE auxiliary subroutine invoked in line 4.

Consider decomposing the function of the running example

whose truth table is given in Table I. CDE first draws an

inverter from the component library (the order is arbitrary).

It will then try to use each of the IN variables of the full-

adder as an input to this inverter. Line 5 of Alg. 1 computes

the values at the output of the inverter. Line 6 of Alg. 1 adds

the output of the inverter to the T truth table, storing the result

in the temporary T ′ truth table as the choice of the inverter is

not final. The first T ′ table for our running example is shown

in Table II.

TABLE II
TRUTH TABLE T ′ AFTER CONNECTING AN INVERTER TO ci

ci ¬ci i1 i2 co Σ

False True False False False False

True False False False False True

False True True False False True

True False True False True False

False True False True False True

True False False True True False

False True True True True False

True False True True True True



Each time a component is drawn from the component

library and connected to unconnected input/internal variables,

a decision tree is induced by the TREEINDUCER subroutine.

A component is preferred if it leads to a binary decision tree

with a smaller number of leaf nodes. Continuing our running

example, the decision tree induces from the truth table T ′

shown in Table II is shown in Fig. 5.
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Fig. 5. Binary decision diagram induced from Table II

The tree shown in Fig. 5 has eight leaf-nodes and this

is the value returned by the EVALUATE function in Alg. 1.

After computing the quality of the tree shown in Fig. 5, CDE,

tries all other possible components. For example, after a few

attempts, CDE tries connecting a XOR gate to the primary

inputs ci and i1. The resulting truth table is shown in Table III.

TABLE III
TRUTH TABLE T ′ AFTER CONNECTING AN XOR GATE TO ci AND i1

ci i1 ci ⊕ i1 i2 co Σ

False False False False False False

True False True False False True

False True True False False True

True True False False True False

False False False True False True

True False True True True False

False True True True True False

True True False True True True

Clearly, the quality of the second tree, shown in Fig. 6, and

having 6 leaf-nodes is better than the first one (with 8 nodes),

hence the XOR gate is preferred. The process continues until

the resulting decision tree has only a root and leaf nodes,

i.e., it is a stump tree. The resulting functional decomposition

for our running example is shown in 7. The difference, from

the original design comes from the fact that we run CDE

separately for each primary output and then we combine the

resulting Boolean functions. Despite that the design is very

similar to the original and exhaustive checking verifies that

the implemented Boolean function is equivalent to that of the

original full-adder.
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Fig. 6. Binary decision diagram induced from Table III
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Fig. 7. Decomposition of the full-adder shown in Fig. 1

We next extend the results from running CDE on the full-

adder to a benchmark of Boolean functions.

V. EXPERIMENTAL RESULTS

We have implemented CDE in Python using the Orange

data mining and machine learning software suite [13] for

inducing the binary decision trees. The implementation is

straightforward and is a couple of hundred lines of code. We

have run all our experiments on a recent Linux platform based

on a 2.8 GHz Intel i7 CPU and equipped with 4 GB of RAM.

We evaluate the performance of CDE on a benchmark

of combinational circuits that we introduce in this paper.

The benchmark contains fifteen Boolean functions and is

summarized in Table IV.

CDE computed decompositions for 13 out of 15 benchmark

instances. The algorithm could not compute decompositions

for MUL3 and 74181 within the preallocated time quota of

15 min. In all successful cases the returned Boolean functions

were logically equivalent to the target function.

CDE produces interesting results in generating functions

that do not only result in all metrics equal to 1 but also being

equivalent (having equivalent system descriptions). This is the

case for the instances HA, SUB1, PAR4 and PAR6.

The main results of CDE are summarized in Table V. The

second and third column of Table V show the number of nodes

and edges, respectively, of the system description returned by

Alg. 1. The ratio of these sizes to the original graph sizes

shown in Table ?? are given in the forth and fifth columns

of Table V. We can see that these values are often close to 1
which means that the graphs are of similar size. The rightmost

column of Table V shows the time in seconds it takes for CDE

to decompose the target Boolean function.



TABLE IV
CIRCUIT DECOMPOSITION BENCHMARK

name description |V | |E| |PI| |PO|

HA half-adder 6 4 2 2

FA1 1-bit adder 10 8 3 2

FA2 2-bit adder 15 9 5 3

FA4 4-bit adder 23 15 9 5

SUB1 1-bit subtractor 12 10 3 2

MUX4 4-bit multiplexer 16 15 6 1

DEMUX4 2-to-4 demultiplexer 15 11 3 4

MUL2 2-bit multiplier 16 12 4 4

MUL3 3-bit multiplier 32 27 6 6

PAR4 4-bit parity checker 8 7 4 1

PAR6 6-bit parity checker 12 11 6 1

74182 4-bit CLA 33 28 9 5

74L85 4-bit comparator 47 44 11 3

74283 4-bit adder 50 45 9 5

74181 4-bit ALU 87 79 14 8

TABLE V
DECOMPOSED BOOLEAN FUNCTIONS

name |V ′| |E′| |V |/|V ′| |E|/|E′| time [s]

HA 6 4 1 1 0.59
FA1 11 9 0.91 0 0.64
FA2 23 20 0.65 0 3.17
FA4 49 36 0.47 0 119.09
SUB1 12 10 1 1 0.66
MUX4 19 18 0.84 0 11.91
DEMUX4 17 13 0.88 0 1.23
MUL2 19 15 0.84 0 1.32
MUL3 - - - - -
PAR4 8 7 1 1 0.35
PAR6 12 11 1 1 0.92
74182 52 47 0.63 0 36.36
74L85 90 87 0.52 0 532.20
74283 108 103 0.46 0 135.17
74181 - - - - -

VI. CONCLUSIONS

In this paper we have formulated the problem of Boolean

logic synthesis (or circuit decomposition) from generic compo-

nent libraries. This problem is computationally very hard and,

depending on the functional completeness of the component

library, may have no solution. We have designed and imple-

mented the CDE algorithm that is based on machine learning,

i.e., it greedily “carves-out” component instances from the

target function (i.e., the function to be synthesized) until some

termination criterion is met. Our design is based on the idea

to use a generic version of the Shannon decomposition (which

is related to building decision trees) as a heuristic in solving

the more difficult generalization of decomposing functions in

terms of arbitrary component (function) libraries. The last fea-

ture sets apart our work from Boolean function minimization

such as minimal covers, optimal decision diagrams, etc.

To verify the validity of our method we propose a bench-

mark of combinational circuits. In addition, we have identified

a set of basic graph similarity metrics which we use for

validating our algorithm. In some cases, CDE reverses a

Boolean function that has been constructed manually. In the

rest of the cases CDE computes function decompositions that

have number and types of component similar to the original,

manually created Boolean functions. Our approach is clearly

many orders of magnitude faster than the trivial brute-force

approach that terminates only for Boolean functions of a very

few variables.

This work is introductory in a sense that, to the best of our

knowledge, there is no in-depth algorithmic analysis of the

problem of logic synthesis. As a future work we plan (1) to

improve the CDE algorithm, (2) to formulate more problems

related to logic synthesis, (3) to identify and implement more

metrics for evaluating the performance of algorithms. To

improve the CDE algorithm we intend to implement guided

back-jumping, exploration of hierarchy and active learning of

decomposed sub-functions.

Given the simplicity of our approach, it shows great promise

given that there are many optimizations that can be introduced.

Such optimizations include introducing better objective func-

tions, applying heuristics to the simple greedy method, and

learning sub-function component models that can be quickly

substituted during the decomposition process.
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