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Abstract

Consistency-based diagnosis algorithms seek for
explanations to unexpected observations in sys-
tems. In particular, given a formal model of a
system and an observation, a diagnosis is a set
of assumables over the health of the components
that is consistent with the model and the observa-
tion. Consistency-based algorithms are widely re-
searched in the model-based diagnosis literature.
A known limitation of consistency-based algo-
rithms is that the number of diagnoses can be very
large. Presenting a very large number of diag-
noses to a human operator is not likely to be help-
ful. This raises two questions: (1) how to present
the information represented by the consistency-
based diagnoses to a human operator? and (2)
are all diagnoses required to present this informa-
tion?. We argue that a human operator requires an
aggregated view of the list of partial set of diag-
noses, and propose a natural way to do so called
the Component Fault Probability (CFP). A CFP
shows for every component the probability that it
is faulty. Then, we describe a way to evaluate the
quality of a CFP, and show that returning all sub-
set minimal diagnoses is seldom required to gen-
erate an accurate CFP.

1 Introduction

A diagnosis problem arises when a system does not behave
as expected. The goal in diagnosis algorithm is to find the
set of system components that caused the unexpected behav-
ior of the system. There are many real-life instances of the
diagnosis problem and solving the diagnosis problem has
been researched in the Artificial Intelligence community for
several decades. One of the fundamental approaches to di-
agnosis is Model-Based Diagnosis (MBD). In MBD, a for-
mal model of the diagnosed system is assumed to exist that
specifies the expected behavior of the system. This model,
along with the observed behavior is then used to deduce can-
didate diagnoses. Consistency-based MBD algorithms, a
predominant class of MBD algorithms, aim to return all can-
didate diagnoses that are logically consistent with the sys-
tem model and the observed system behavior [Reiter, 1987b;
de Kleer and Williams, 1987a]. Such candidates are called
diagnoses.

If there is only a single diagnosis, then this diagno-
sis is returned by the diagnosis algorithm and the user

can then replace or fix the faulty components. Unfortu-
nately, in systems that are not very small it is often the
case that the number of diagnoses is very large, potentially
exponential in the number of system components. Prior
work have proposed algorithms for suggesting additional
tests to narrow the list of diagnoses [Shakeri et al., 2000;
Feldman et al., 2010b], or for positioning probes to view
the output of internal system components [de Kleer and
Williams, 1987a). We consider a different presentation,
where the output of the diagnosis algorithm should be dis-
played to a human operator that will decide on subsequent
actions.

Clearly, a human operator cannot intelligently consider a
list of hundreds of possible diagnoses. Given the probability
of each diagnosis to be correct, one may consider displaying
only the most probable diagnoses. In the absence of proba-
bilities, one common approach is to display only diagnoses
with the smallest number of components, known as the min-
imal cardinality diagnoses. Another common approach is to
return only a diagnosis that is not a superset of another di-
agnosis. A set of such diagnoses is known as minimal sub-
set diagnoses. Unfortunately, for systems with hundreds of
components or more, the number of even only the minimal
cardinality diagnoses becomes so large that even enumer-
ating them is time consuming [Siddiqi, 2011]. Beyond the
computational problems, there is an additional user inter-
face challenge: how is a human operator expected to reason
about a long list of possible diagnoses?. Furthermore, it is
unknown how much information is lost by considering only
the highest probable/minimal diagnoses. Figure 2, which is
explained in greater detail later in this paper, shows an ex-
ample where returning the most probable diagnosis is very
misleading.

Based on recent research [Feldman et al., 2013; Stern et
al., 2012], we consider a natural aggregation of the set of
diagnoses by mapping it to a probability of fault for every
component. We call the assignment of fault probability to
each component the Component Fault Probability (CFP).
CFPs can be evaluated by measuring the vector distance be-
tween a CFP and the “optimal” CFP produced by the real
faults. Among the contributions of this paper is the defini-
tion of a CFP, describing how to generate a CFP from a set
of diagnoses and how to evaluate a given CFP.

The question we then raise is which and how many diag-
noses a diagnosis algorithm needs to find to produce a high
quality CFP. Interestingly, we show empirically that find-
ing all minimal subset diagnoses is not needed to produce
a good CFP. In fact, improvement caused by adding more



diagnoses to the CFP quality becomes negligible after find-
ing a relatively small number of minimal subset diagnoses,
as the CFP quality converges to a specific quality. We also
show that the amount of diagnoses required to converge to
that CFP quality greatly depends on the order by which the
minimal subset diagnoses are found. Convergence of the
CFP quality was faster and more stable when the diagnoses
were found in order of increasing cardinality than in the re-
verse order. This result poses a broader question to the di-
agnosis community: how to search for diagnoses such as to
find diverse set of diagnoses that will result in rapid conver-
gence of the CFP quality.

2 Consistency-Based Model Based Diagnosis

Model Based Diagnosis (MBD) problems arise when the
normal behavior of a system is violated due to faulty com-
ponents as indicated by certain observations. We focus on
weak fault models (WFM), which ignore the mode of abnor-
mal behavior of components [de Kleer er al., 1992].

An MBD problem is specified as a triplet
(sD, comps, oBS) where: sD is a system description,
COMPS 1is a set of components, and OBs is an observation.

The system description takes into account that some com-
ponents might be abnormal (faulty). This is specified by an
unary predicate h(-) on components such that h(c) is true
when component ¢ is healthy, while —h(c) is true when c is
faulty. Denoting the correct behavior of c as a propositional
formula, ., sD is given formally as

SD = /\ h(c) = ¢
ce COMPS

Namely, each component which is healthy follows its cor-
rect behavior. A diagnosis problem (DP) arises when,
under the assumption that none of the components are
faulty, there is an inconsistency between the system descrip-
tion and the observations [de Kleer and Williams, 1987b;
Reiter, 1987al.

Definition 1. [Diagnosis Problem]. Given an MBD prob-
lem, {SD, coMPS, OBS), a diagnosis problem arises when

SD A /\ h(c) ANops L
ce COMPS

For example, a diagnosis problem arises for the MBD of
Figure 1 as normal behavior would give output £ = 1. Once
there is an inconsistency, a diagnosis algorithm tries to find
a subset A C comps which, if assumed faulty, explains the
observation.

Definition 2. [Diagnosis] Given an MBD problem,
(SD, coMmPs, OBS), the set of components A C COMPS is a
diagnosis if

SDA N =h(c) A\ h(c) A OBS ¥ L
cEA c¢A

We say that A is a minimal diagnosis if no proper subset
A" C A is a diagnosis, and that A is a minimal cardinality
diagnosis if no other diagnosis A’ C comPps exists such that
|AT| <A

For the MBD of Figure 1, Aj={X7, X5}, Ax={01},
As={As} are minimal diagnoses, and A, A3 are minimal
cardinality diagnoses, as there is no smaller diagnosis.

Minimal subset diagnoses are especially in the interest of
an MBD engine since based on Definition 2 every superset
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Figure 1: MBD: A full adder.

of a minimal subset diagnosis is a diagnosis too. Therefore,
when focusing on the minimal subset diagnoses we actu-
ally represent the superset space of those diagnoses. The
number of subset minimal diagnoses is typically huge, and
therefore a reduced set that contains only the minimal car-
dinality diagnoses is in the interest of an MBD engine too.
Those diagnoses are considered since with no information
about the fault probability of the components we can as-
sume identical probability for all the components and thus
minimal cardinality diagnoses represent actually those sets
with the highest probability.

Beyond the fact that the number of minimal subset and
cardinality diagnoses is exponential, MBD is known to be
a hard problem where algorithms have exponential runtime
(in the size of the system). In terms of complexity, comput-
ing the first minimal subset diagnosis is in P, but computing
the next one is NP-hard [Bylander et al., 1991]. Computing
the minimal cardinality is NP-hard, even for the first diag-
nosis [Selman and Levesque, 1990]. Both reasons, the ex-
ponential number of minimal diagnoses and the exponential
computation, motivate an MBD engine to return a reduced
set of diagnoses.

An additional challenge is raised as a result of computing
a complete set of minimal subset or cardinality diagnoses:
how to prioritize the diagnoses? One way to prioritize the
diagnoses is by the prior fault probability of the compo-
nents. With the independent assumption, the probability of
a diagnosis can be determined by the product of the com-
ponents it contains. With no prior probability the diagnoses
can be prioritized based on their cardinality.

There are two methods to discriminate the actual diagno-
sis, the diagnosis that actually contains the faulty compo-
nents, either by testing or probing [de Kleer and Williams,
1987b]. In the testing method the diagnosis process is run
through additional input vectors. Under the assumption that
faulty components in the system remain permanently faulty
along different input vectors, we can prune diagnoses that
are inconsistent with multiple observations. The probing
task is similar, but instead of running the diagnosis on a
new input vector, the probes are requests on the observa-
tion of the output of internal components. Probes can prune
diagnoses that are not consistent with the new internal ob-
servation. Both methods can be executed iteratively until a
single diagnosis is found.

The main challenge in both methods is to reduce the num-
ber of probes (tests). A common greedy approach to address
this challenge is to choose a probe (test) that maximizes
the information gain [Feldman et al., 2010b]. Specifically,
given the probability of each diagnosis in the diagnoses set
we can measure the entropy of the diagnoses set. The in-
formation gain is the difference between the entropy of the
diagnoses sets before and after activating a probe (test).

The testing and probing processes may be expensive in
the number of probes (tests) required to focus on the actual
diagnosis. Furthermore, in some cases the output of a diag-
nosis algorithm should be displayed to a human operator. A



Al AQ A3 A4 A5 A6 CFP
Cl 1 0 0 0 0 0 0.2
2| 1 0 0 0 0 0 0.2
C3| 0 1 1 1 1 0 0.8
C4| O 1 0 0 0 0 0.16
G510 0 1 0 0 0 0.16
c6| 0 0 0 1 0 0 0.16
C71 0 0 0 0 1 0 0.16
Cc8| O 0 0 0 0 1 0.16
p 0.2 ] 0.16 | 0.16 | 0.16 | 0.16 | 0.16

Table 1: Diagnoses and CFP for Figure 2

reasonable question that a user might raise is “what is the
probability that a component C'is faulty?”. This is helpful,
for example, to decide which component should be replaced
first. More generally, a human diagnosis algorithm operator
may wish an estimate of the probability that each component
is faulty. Next, we discuss this question and its implications
on how diagnosis algorithms should run.

3 Component Fault Probability (CFP)

We use the term Component Fault Probability (CFP) to de-
note a mapping of components to an estimate of the proba-
bility that they are faulty.

Definition 3. [Component Fault Probability (CFP)] A CFP
is a mapping COMPS :— [0, 1] intended to estimate the
probability that a given component is faulty.

A similar notion to the CFP was introduced in prior
work [Stern et al., 2012; Feldman et al., 2013]. Follow-
ing these prior work, a CFP can be generated from a set of
diagnoses that were found by a diagnosis algorithm (DA) as
follows.

Let 2 be a set of diagnoses found by a DA, and let
p : © — [0,1] be a probability distribution over the di-
agnoses in (), corresponding to the probability that each
diagnosis is correct. Many diagnosis algorithms generate
this, for example, by considering a prior probability (with-
out considering the observations) on the fault of each com-
ponent and considering the probability of a diagnosis A (de-
noted p(A)) as the product of the prior probability of the
components in A, i.e., p(A) = [[oca P(C), where p(C) is
the prior probability that C' is faulty.!

A CFP can be generated from €2 and p as follows:

CFP(C) = p(A)-lcea (M
AEQ
where 1cen is the indicator function defined as:

1 1 CeA
CEA =1 0 otherwise

This way to generate CFP from (2 and p is correct if p as-
signs correct and independent probabilities to the diagnoses
in ). Thus, we only consider this way to generate a CFP
from €2 and p in this paper, and refer to this process simply
as generating a CFP from Q) and p.

Our main argument in this paper is that presenting
a human operator with a CFP is more meaningful and
helpful than a long list of diagnoses. As mentioned

"To verify that p is a valid probability distribution, one is also
required to normalized their sum to one.

a1 c2 p({c1,c2})=0.2
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€4 ———] p({C3,c4})=0.16
€5 ] p({C3,C5})=0.16
— 6 ——— p({C3,C6})=0.16
€7 ] p({c3,c7})=0.16
€8 ——

p({C3,C8})=0.16

Figure 2: An example where viewing the most probable di-
agnosis can be more misleading than viewing the CFP. The
most probable diagnosis is {C'1, C2}, having a probability
of 0.2. The CFP, however, would show that C3 has a 0.8
probability of being faulty, and is therefore more likely to
be faulty than C'1 and C2.

above, consistency-based DAs may return a very large
number of diagnoses. A human operator cannot reason
effectively about a long list of diagnoses. One might
consider presenting a short list of only the most probable
diagnoses to the operator. This approach, however, may be
misleading. For example, consider the system depicted in
Figure 2, and assume that a DA has returned five diagnoses
with a probability of 0.16 each, and another diagnosis
{C1,C2} with a probability of 0.22. The most probable
diagnosis is {C1,C2}, having a probability of 0.2. The
CFP, however, would point at C'3 as the component that is
most likely to be faulty, having CF P(C3) = 0.8.

The CFP poses an informative aggregation of a set of di-
agnoses. However, a set of diagnoses contains more infor-
mation than the CFP that is generated from it. The infor-
mation that is lost is the dependency between the different
components. For example, consider again the diagnoses in
Figure 2. C1 only exists in a single diagnosis {C'1, C2}.
Thus, C'1 is only faulty if component C2 is faulty as well.
This relation is lost in a CFP. Automated algorithms for de-
ciding subsequent tests or probes [Feldman er al., 2010b;
de Kleer and Williams, 1987b; Shakeri et al., 2000] might
make use of this additional relation information and might
thus prefer as input a list of diagnoses over just the CFP. In
this paper we focus on diagnosis algorithms whose output
is displayed to a human operator. A human operator would
find it difficult to reason about a list of diagnoses and would
benefit from the aggregated view provided by a CFP.

3.1 Evaluating CFPs

Using Equation 1, one can generate a CFP from a list of
diagnoses generated by any MBD algorithm. To evaluate
the quality of a generated CFP, we consider the “optimal”
CFP, denoted by CFP* and defined as follows:

1 C is faulty
0  otherwise

CFPWC)z{

CFP* can be viewed as an offfine optimal CFP, and a CFP
can be evaluated by comparing how “close” it is to CFP*.
One can think of many possible distance metrics to measure

The probability of the diagnoses is normalized and therefore
their sum is equal to 1.
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Figure 3: An example where adding more diagnoses im-
proves the CFP quality.
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Figure 4: An example showing how the CFP diff converges
to zero as more diagnoses are considered.

the “closeness” of a given CFP and CFP*. We chose to use
a simple vector distance:

Eval(CFP(COMPS)) =
(2)

V> cecomps(CFP(C) — CFP*(C))?

Lower  distance  indicates a  better = CFP.
Eval(CFP(COMPS))=0 indicates a diagnosis set that
contains only a single diagnosis of faulty components
solely.

Introducing CFPs and a way to evaluate them (Equa-
tion 2) raises the challenge of constructing diagnosis algo-
rithms that generate quickly high quality CFPs. Next, we
evaluate the quality of the CFPs generated from a set of
subset minimal diagnoses and the impact of finding more
diagnoses to the resulting CFP.

4 Experimental Results

We performed experiments on the 74xxx benchmark
Boolean circuits, using observations from the “synthetic
track” in the annual DXC diagnosis competition of 2009.°
For each observation we run a breadth first search to find
all minimal subset diagnoses until either all minimal subset

3See details in the DXC 09 website: http://sites.
google.com/site/dxcompetition2009/.

0400000000000t

Eval(CFP(COMPS))
o
o
s

0 5 10 15 20 25 30
# Diagnoses

Figure 6: An example where adding more diagnoses only
degrades the CFP quality.

diagnoses were found or until 40 minimal subset diagnoses
were found.* The resulting set of minimal subset diagnoses
were then ordered by cardinality, starting from the diagnoses
with the minimal cardinality diagnoses. Let I';,,. be this se-
quence of diagnoses, where T';,,.[i] denotes the 7** diagnosis
in the sequence.

For every diagnosis in I';,. we computed the CFP
based on the union of that diagnosis and all the diagnoses
that preceded it in I';,.. Thus, the first CFP was com-
puted based on the diagnosis set that contains only a sin-
gle diagnosis I';,c[1], and then the second was computed
based on a diagnosis set that contains {L;pc[1], Tine[2]},
etc. Let CFP;,[i] denote the CFP generated from
{Tinell], Tinel2], s Tinc[i]} and let Eval(CF Piy.[i]) de-
note its quality (measured using Equation 2). For every
CFP;,.[i] we measured the difference in CFP quality be-
tween two subsequent CFPs (using Equation 2) and normal-
ize the result by dividing it with the square root of the num-
ber of components in the diagnosed system. We call this
measure “CFP diff”, computed for the i*" diagnosis in L',
as follows:

Eval(CF Py, li]) — Eval(CF Py,cli — 1))
VICOMPS|

CFP diff is intended to measure the improvement of CFP
by searching for additional diagnoses. Figures 3 and 4 show
the CFP quality and the CFP diff, respectively, as a function
of the number of diagnoses found, for a single observation
of the 74182 system.

Figure 5 shows the CFP diff as a function of the number
of diagnoses used to generate that CFP for all the 74xxx
systems and all the observation set in the DXC benchmark
set. Each of the red z mark data points correspond to a CFP
diff of a specific observation as a function of the number
diagnoses seen so far.

As can be seen, the value of adding diagnoses converges
very close to zero. This suggests that finding more diag-
noses is not always helpful, and that finding all minimal di-
agnoses is not needed. Thus, a smart diagnosis algorithm
might exploit this by finding only some of the minimal di-
agnoses instead of all them. This is expected to result in a
better runtime and practically the same quality of CFP.

3

440 was chosen to avoid exhausting memory or time. Other
bounds are also possible.
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Figure 5: CFP diff as a function of the number of diagnoses found, when searching for subset minimal diagnoses. The red x
marks are for experiments where the diagnoses were found in order of increasing cardinality, while the blue diamonds are for

when diagnoses where found in the reverse order.

The convergence of the CFP diff to zero, observed in Fig-
ure 5, suggests that in every observation the CFP quality
converges to a specific value as more consistent diagnoses
are found. This can be seen clearly also in Figure 3, where
the CFP quality converges to approximately 1.16 as more
diagnoses are found. The converged CFP quality is not nec-
essarily better than the CFP quality obtained by considering
only a subset of the consistent diagnoses. For example, Fig-
ure 6 shows the CFP quality as a function of the number
of diagnoses found for a different observation. In this ob-
servation, the CFP quality starts at the optimal value (zero
distance from CFP*). This is since the correct diagnosis
happened to be the first diagnosis that was found. As more
diagnoses are found, the CFP quality degrades. Thus, con-
sidering more diagnoses is not always helpful. Since when
running a diagnosis algorithm one does not know CFP*, it
is a challenge to identify when adding more diagnoses does
not help.

Next, consider the blue diamonds in Figure 5. These di-
amonds show the CFP diff for the same set of experiments,
where the order of the sequence of diagnoses is reversed.
This means that the first diagnoses considered is not the
minimal cardinality diagnoses, but rather the maximum car-
dinality diagnoses. As can be seen, while a general trend of
convergence to zero exists to some extent, it is much more
noisy then when diagnoses were considered in order of in-
creasing cardinality. This demonstrates the potential impor-
tance of the order by which diagnoses are found by the di-
agnosis algorithm.

5 Related Work

Many of the existing diagnosis techniques propose to apply
a combination of deterministic reasoning and search algo-
rithms. One classic approach involves a two stage process.
First, it identifies conflict sets, each of which includes at
least one fault. Then, it applies a hitting set algorithm to

compute sets of multiple faults that explain the observation
[de Kleer and Williams, 1987a; Williams and Ragno, 2007].
These methods guarantee sound diagnoses, and some of
them are even complete. However, they tend to fail for large
systems due to infeasible runtime or space requirements.

Compilation-based methods have also been proposed in
the MBD context. Torasso and Torta apply BDDs to com-
pile the model [Torasso and Torta, 2006]. Darwiche [Dar-
wiche, 2001] compiles a system description into Decompos-
able Negation Normal Form (DNNF) where a minimal car-
dinality diagnosis can be found in time that is polynomial
in the size of the DNNF. However, the size of the DNNF
may grow exponentially and is shown to become a bottle-
neck [Siddigi and Huang, 2007].

Feldman et al. [2010a] propose a stochastic diagnosis al-
gorithm called SAFARI. In contrast to the above, SAFARI
does not try to compute the set of all diagnoses and it does
not guarantee to find minimal cardinality diagnoses. Its ad-
vantage is that it is very fast. Like other MBD algorithms,
it tries to generate as many small diagnoses as possible and
does not consider aggregating the resulting set of diagnoses.
Thus, the work in our paper is orthogonal to SAFARI, as a
CFP can be generated from the diagnoses found by SAFARI
using Equation 1.

Keren ef al. [2011] present an alternative approach to
diagnosis that combines MBD with multi-label classifica-
tion. They propose to build a classifier that maps symptoms
(observations) of the system to possible faults. The major
advantage of this approach is in reducing significantly the
online computational complexity; The learning process of
the relations between observations and the diagnoses is per-
formed in advance offline. Afterwards (online), a diagnosis
can be computed immediately by using the classifier that
was learned offline. Unlike other diagnosis algorithms men-
tioned above, this machine learning approach to diagnosis
returns a single diagnosis and not a set of diagnosis. Similar



to our approach, the output of this machine learning based
diagnosis algorithm is not measured by its consistency but
by its distance to the real diagnosis (the faults), using stan-
dard classification metrics such as false positives and false
negatives. In our work we evaluated the CFP with a sim-
ple vector distance metric instead. In future work, however,
we plan also to evaluate our results using machine learning
metrics such as false positives and negatives, precision and
recall.

Maier et al. [2011] pointed out that often Al problems lie
at the intersection of the fields of model-based diagnosis and
probabilistic reasoning and that probabilistic reasoning can
be a promising alternative to the model-based diagnosis ap-
proaches. They use a Bayesian networks (BNs) results from
first-order model-based diagnosis formalism for this transla-
tion to first-order probabilistic reasoning framework. Sim-
ilar to our approach, they also remark that solutions to Al
problems in engineering domains need to be compactly rep-
resented for the needs of engineers. However, by compactly
represented they mean auto-generating low-level represen-
tation such as BNs that can be used as an input to off-the-
shelf tools while we aim to find a more general and simple
approach for compact representation not by finding the con-
nections and dependencies between components but rather
by addressing the logic model of the system done by aggre-
gating the diagnoses to CFP.

6 Conclusion and Future Work

In this work we proposed an alternative form of output to di-
agnosis algorithm called the component fault distribution, or
CFP in short. CFP maps every component in the diagnosed
system to a probability that this component is faulty. We ar-
gue that a CFP is a more reasonable output than a single or
k most probable diagnoses since it contains aggregated in-
formation over all the found diagnoses. We also argue that
a CFP is more reasonable to a human operator than a long
list of diagnoses. CFPs can be generated from a list of diag-
noses that are returned by a diagnosis algorithm, and a way
to evaluate CFPs is proposed. Empirical evaluation on the
74xxx system suggests that the quality of a CFP converges
quickly as more diagnoses are found.

This observation leads to considering, in future work,
how to develop a diagnosis algorithm that finds a small
but representative set of diagnoses that will generate a high
quality CFP. One might even consider generating a CFP
from “almost” consistent diagnoses - set of components that
if assumed to be faulty explains almost all the observed sys-
tem outputs.
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