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Abstract

This work studies potential ways of integra-
tion of two techniques for fault detection, isola-
tion, and identification in dynamic systems: the
LYDIA-NG suite of diagnosis algorithms and the
Consistency-based Diagnosis approach with Pos-
sible Conflicts. By integrating both techniques,
LYDIA-NG will benefit from a more efficient fault
detection and isolation task, and Possible Con-
flicts will benefit from the identification capabili-
ties of LYDIA-NG. In this paper, we define a com-
mon framework that integrates both techniques,
and then we apply the proposed integrated ap-
proach to a three-tank system, and draw some
conclusions about potential ways of integration.

1 Introduction

The need for safety and reliability in engineering systems
provides the motivation for developing Integrated Systems
Health Management (ISHM) methodologies that include ef-
ficient fault diagnosis mechanisms. In this work we focus
on model-based approaches to on-line fault diagnosis of dy-
namic systems. Online methods for model-based diagnosis
require the use of quick and robust fault detection methods
to establish discrepancies between observed and expected
system behavior. However, accurate and timely online fault
diagnosis of complex dynamic systems is difficult and can
be computationally expensive [Isermann, 2006].

In this work we study how to combine two techniques
suitable for model-based diagnosis of dynamic systems
looking for better performance in on-line fault diagnosis.
We have used the LYDIA-NG suite of algorithms [Feldman
et al., 2013]. The main idea of LYDIA-NG is to perform
multiple simulations for various hypothesized health states
of the plant. The output of these multiple simulations is
then processed and combined into single diagnostic output.
LYDIA-NG has been successfully used for complex applica-
tions like space satellites [Feldman et al., 2013]. However,
when applied to online fault diagnosis of large dynamic sys-
tems, running all the hypothesized health states becomes a
quite difficult and time consuming task.

Several approaches have been proposed in recent years
to deal with the complexity issue. System decomposition
methods, have been proposed to reduce the complexity in
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the fault diagnosis task [Bregon et al., 2012] by generating
smaller simulation submodels which can run in parallel and
provide independent diagnosis decisions. The Possible Con-
flict, PC, approach [Pulido and Alonso-Gonzilez, 2004], is
an off-line dependency compilation technique from the DX
community, which decomposes the global system model
into minimal submodels, and performs on-line behavior es-
timation using simulation, dynamic bayesian networks, or
state-based neural networks [Pulido et al., 2012]. If a dis-
crepancy is found, a set of fault candidates is generated by
a minimal hitting-set algorithm of the triggered PCs. How-
ever, additional techniques must be used to refine the set of
fault candidates.

The goal of this work consists of integrating PCs within
the LYDIA-NG diagnosis framework. First, PCs will de-
compose the global simulation model into a set of smaller
simulation submodels. Then, PCs will be used for efficient
online fault detection and fault localization, providing a sub-
set of fault candidates from the minimal hitting-set of the
fault parameters linked to the set of equations in the PC. The
subset of fault candidates is then used as input to LYDIA-
NG, where simulations are run only for each one of the fault
candidates, and its result is processed and combined to pro-
vide the diagnosis output. The approach has been tested by
using a three-tank system case study.

The rest of the paper is organized as follows. Section
2 presents the basic definitions and running example used
in this work. Section 3 briefly introduces LYDIA-NG and
PCs. Section 4 presents our proposal to integrate PCs within
the LYDIA-NG diagnosis framework. Section 5 describes
the experimental results obtained for the three-tank system.
Section 6 presents related work. And, finally, section 7
presents the discussion and conclusions.

2 Concepts and Definitions

In this section we present our basic definitions and a running
example that we use to illustrate the significant concepts of
this paper. Since both LYDIA-NG and PCs are model-based
diagnosis approaches, we provide a set of definitions about
models and faults that will allow us to explain later both
techniques using the same framework.

2.1 Definitions

For the purpose of this work we focus our description on
continuous systems, with only one nominal state, and whose
behavior can be described as a set 3 of Ordinary Differential
Equations (ODEs). The model of our system will be the
basic system description to perform diagnosis:



Definition 1 (Model). The system model is defined as
M(%,U,Y, X, 0), where: X is a set of ODEs, defined over
a collection of known and unknown variables: U is a set of
inputs, Y a set of outputs, X a set of state and intermediate,
i.e. unknown, variables, and © is the set of parametersl.

Definition 2 (System Description, SD). SD is made up of
(M, H,0,1I), where

e His the health-vector defined by means of h; | 1 <14 <
k health variables, that allow us to characterize the set
of states in the system, i.e. each h; € H is a potential
mode for the system, either nominal or faulty.

e o is a mapping function: o(M,H,) —
MHC(EHca UHC, YHC, XHC, G)Hc), that given the
model, M, and the current health status, H ¢, provides
the model for behavior estimation for the current mode
(or current system description Mpg.): Xy, C 3,
UHc - U, YHC c Y, XHC c X, and @Hc - @)

e II is a mapping function I1(0..) — {Hc¢ | Hc C H}
that, given a set of parameters, provides the set of
health variables that relate to the set of model parame-
ters: 0.. C O.

An implicit assumption in our modeling approach is that
we can use the same set of equations for both the nominal
behavior estimation and the faulty behavior estimation, just
changing the value of 6;.

In model-based diagnosis, the model of the system is used
to compute a residual signal, which is used for fault detec-
tion and isolation purposes. A residual is computed as the
difference between the observed behavior (obtained via sen-
sor outputs y;) and the expected behavior (estimated by the
system model, y;), and it is formally defined as follows:

Definition 3 (Residual). A residual is a real-valued mea-
sure R(y;, y;) of the difference between real and simulated
system output at time ¢.

2.2 Running Example

In this paper, we use the three-tank system shown in Fig. 1
as the running example. The three tanks are denoted as 77,
T5, and T3. They all have the same area A; = A = Az =
3 [m?]. The experiments are performed assuming the gravity
g = 10 and the liquid with density p = 1.

Figure 1: Diagram of the three-tank system.

Tank 77 gets filled from a pipe qo with a constant flow of
1.5 [m3/s]. It drains into 75 via a pipe q;. The liquid level
is denoted as hj. There is a pressure sensor p; connected

ISince we are dealing with fault diagnosis, in our model we
are mainly interested in every parameter suitable to model faulty
behavior.

to 7' that measures the pressure in Pascals [Pa]. Starting
from the Newton’s (and Bernouli’s) equations and manip-
ulating them we derive the following Ordinary Differential
Equation (ODE) that gives the level of the liquid in 77 :

LM_QO—k1vh1—h2 (1
d A

In Eq. 1, the coefficient k; is used to model the area of
the drainage hole and its friction factor. We emphasize the
use of ky because, later, we will be “diagnosing” our system
in term of changes in k;. Consider a physical valve R; be-
tween 17 and 715 that constraints the flow between the two
tanks. We can say that the valve changes proportionally the
cross-sectional drainage area of ¢; and hence k;. The diag-
nostic task will be to compute the true value of k1, given p1,
and from k; we can compute the actual position of the valve
R;. The water levels of T and T3, denoted as ho and hs

respectively, are given by:

dhy _ kivhy — hy — kav/hy — hs

dt Ay @)
dhs  kav/ha — hy — k3\/h3
=3 = . 3)
dt A

Values k1, ko, and k3, are constant values with no phys-
ical meaning, and we have set them with a value of 0.75.
Finally, we turn the water level into pressure:

_ghiAi
=4

where i is the tank index (i € {1, 2, 3}). To observe the be-
havior of the system we have an observational model, that
allows us to know or read each value p;. We use p; to dis-
tinguish the measured variable from the model output p; as
P; = pi-

It is assumed that the initial water level in the three tanks
is zero. Additionally, we make explicit the relation between
the state variables, h; in our example, and their derivatives,
dh;, as h; = f dh; - dt. These equations allow us to select
an integral or differential approach for behavior simulation,
depending on the selected causality. These equations make
no influence in the diagnosis results, because they will have
no 6;, and consequently no health status.

Di =gh; “4)

3 Algorithms

This section presents the fundamental ideas of the LYDIA-
NG diagnosis framework and the structural model decom-
position approach with PCs.

3.1 LYDIA-NG

The basic idea of the LYDIA-NG diagnostic library is to per-
form multiple simulations for various hypothesized health
states of the plant. The output of these simulations is then
processed and combined into single diagnostic output.

The LYDIA-NG diagnostic library consists of the follow-
ing building blocks: (i) Generator of Diagnostic Assump-
tions; (ii) Simulation Engine; (iii) Residual Analysis En-
gine; (iv) Candidate Selection Algorithm; (v) System State
Estimation Algorithm. Detailed description of these blocks
can be found in [Feldman et al., 2013].

Algorithm 1 shows the top-level diagnostic process. The
inputs to Algorithm 1 are a model and a scenario, and the



result is a diagnosis. Algorithm 1 supports a large variety of
simulation methods that may or may not use time as an in-
dependent variable. The only requirement toward the simu-
lation engine is to predict a number of variables whose types
can be mapped to LYDIA-NG and to be relatively fast.

Algorithm 1 Diagnosis framework
1: function DIAGNOSE(SCN) returns a diagnosis

inputs: SCN, diagnostic scenario

local variables: h, FDI vector, health assignment
P, real vector, prediction
, a set of diagnostic candidates
DIAG, diagnosis, result

while h «— NEXTHEALTHASSIGNMENT() do
p < SIMULATE(M,~,h)
r «— COMPUTERESIDUAL(p, «)
Q—QUh,r)

end while

DIAG < COMBINECANDIDATES(2)

return DIAG

end function

N A ol

The basic idea of Algorithm 1 is to simulate for various
health assignments and to compare the predictions with the
observed sensor data (i.e., telemetry). There are several im-
portant aspects of these algorithms that ultimately affect the
diagnostic accuracy as measured by various performance
metrics.

The first algorithmic property that determines many of
the diagnostic performances is the order in which health-
assignments are generated. In Algorithm 1 this is imple-
mented in the NEXTHEALTHASSIGNMENT function. The
latter subroutine also determines when to stop the search and
should be properly parametrized depending on the model
and the user requirements. In the standard LYDIA-NG diag-
nostic library we provide the breadth-first search (BFS), the
depth-first search (DFS), and the backwards greedy stochas-
tic search (BGSS) diagnostic search policies.

Each simulation produces a set of predicted values for a
given health-assignment. The second important property of
Algorithm 1 is the comparison and ordering of the diagnos-
tic candidates. This is done by mapping the predicted and
observed variables into a single real-number, called a resid-
ual.

Residual generation functions in LYDIA-NG bear resem-
blance to loss functions in decision theory. For example,
residuals may be squared or absolute residuals [Feldman et
al., 2013]. A disadvantage of the squared residuals function
is that it adds a lot weight to outliers.

3.2 Consistency-based diagnosis with PCs

In this section we present the fundamental ideas of
Consistency-based Diagnosis and Possible Conflicts.

Consistency-based Diagnosis

Consistency Based Diagnosis (CBD) performs fault detec-
tion and fault isolation using only models of correct behav-
ior in a two stage process. First, we identify if there exists
a discrepancy between the observed behavior and the ex-
pected behavior, thus defining a discrepancy in terms of a
residual. Corresponding to each residual, or discrepancy, is
a conflict [Reiter, 1987]. Hence, fault detection consists of
computing every conflict.

The second step is fault isolation, which consists of com-
puting the minimal hitting sets of the conflicts, since they
characterize the whole set of minimal diagnoses [Reiter,
1987]. Intuitively, a conflict is a set of components that
cannot behave properly simultaneously, given the system
description and current observations of abnormal behavior.
In this work we use the Possible Conflicts (PCs) approach
to avoid the on-line computation of conflicts and speed up
overall fault isolation. PCs are designed to compute off-line
those subsystems capable of becoming conflicts online.

For consistency-based diagnosis using PCs, we only use
o(M,Hn) with Hn corresponding to a nominal mode.
Since we are dealing with a continuous system working
in one nominal mode, we can compute offline the set of
PCs for Myn(Zmn, Upn, Yin, Xin, ©mn), as will be de-
scribed later. The output of the consistency-based diagnosis
using PCs is a set of fault candidates C' defined in the lattice
provided by ©*.

Model decomposition with PCs

The Possible Conflicts (PCs) approach [Pulido and Alonso-
Gonzdlez, 2004] is a model decomposition method that
finds (off-line) every subset of equations capable of generat-
ing conflicts. PCs provide the structural and causal model of
a subsystem with minimal redundancy. The set of equations
in a PC can be used to simulate the correct behavior of the
subsystem. Hence, PCs can be used in CBD of dynamic sys-
tems [Pulido et al., 2001]. For the sake of self-containment,
we summarize here the proposal for PCs computation given
in [Pulido and Alonso-Gonzélez, 2004].

To compute PCs, we need the structural model of the
system under study, which can be obtained from the set of
equations in the system description, once we select a given
working mode, tailored for our new problem formulation,
instead of the original process which was suitable for system
descriptions provided as hypergraphs [Pulido and Alonso-
Gonzdlez, 2004]. We will illustrate the process using the
three-tank system in Fig. 1, and the set of equations in its
model as described in Section 2.2.

We need an abstraction of our model description
SD = (M,H,o,II). Let’s assume we compute
the set of PCs for a given nominal mode character-
ized by H,. Using o(M,H,), we obtain My, =
(2m,,Un,,Yu,,Xn,,0m,). For the structural model,
we only need the information about the measured and un-
known variables in each model equation. Thus each equa-
tion o; € X, will provide one structural constraint o; —
(S;, Xi), where S; accounts for the measured variables
from Uy, , Yy, in o;, and X; accounts for the unknown
(state or intermediate variables in o).

For the three-tank system the structural model is made up
of the following constraints:

Constraint Sensors Unknowns
c1 {0} {dn1, h1, ha}
c2 {} {dn2,h1,h2, h3}
cs { {dn3, ha, ha}
ca { {p1,h1}
cs { {p2, ha}
Ce {} {ps, h3}
cr {pi} {p1}
cs {p3} {p=}

Co {p3} {ps}

10 {3 {h1,dn1}
c11 {} {h2,dn2}
c12 {} {h3,dn3}



where constraints ¢; to ¢z are related to equations (1) to
(3); constraints ¢4 to cg are related to the equation (4) for
each one of the tanks; constraints c7 to cg make explicit the
diagnosis observational model, relating the output variable
p; and its associated sensor p;; and constraints cjg to cq2
make explicit the dynamic in the system: relation between
the state variable and its derivative.

The first step in PC computation is to look for the com-
plete set of minimally redundant subsets of equations, which
we call the Minimal Evaluation Chains (MECs). A MEC
represents a strictly overdetermined” set of equations that
can potentially be solved using local propagation (elimina-
tion method): each MEC will have n constraints and n — 1
unknowns. A summary of the algorithms used to compute
MECs in a system can be found in [Pulido and Alonso-
Gonziélez, 2004]. The set of MECs in the system in Fig.
1is:

® mecy = {077 C4, C10,C1,Cs5, 08}

e mecy = {cs, C5,C11,C2, C4, C6, C7, Co }

e mecy = {co, Co, C12,C3, C5,C8 }

We need to know the different ways an equation can be
solved, because we can deal with non-linear models. These
ways are usually called the set of possible causal assign-
ments for the variables in an equation. We assume that the
set of possible causal assignments is known for the system
model, and we build the complete set of valid causal assign-
ments for the set of MECs, using exhaustive search [Pulido
and Alonso-Gonzdlez, 2004]. We call each valid causal as-
signment Minimal Evaluation Model (MEM).

For the three-tank system, we assume that the causality
is given by the expression in equations (1) to (6), except
for the observational model (in this case we allow solving
constraints ec; to ecg in both directions because we need
to convert some system measurements Y in MEM inputs,
Uyc). The set of MEMs for the three-tank system and their
discrepancy nodes are shown in Table 1.

Table 1: MEMs for the three-tank system and their discrep-
ancy nodes.

MEM Discrepancy Parameters
{c7,cq,c10,c1,05,C8} Pi k1, Ay
{cs,cs5,c11,C2,C4,C6,C7,Co} P3 ki, k2, Ao
{cv, cs, C12, C3,C5,C8} D3 k2, ks, As

Fault detection and isolation using PCs

In the MEM there is a special node called discrepancy node
(representing the only variable that is estimated by two dif-
ferent ways). Therefore, that node is the potential source of
aresidual, or discrepancy, using only the values of measured
variables as inputs, and the past value of state-variables.

In CBD [Reiter, 1987; de Kleer and Williams, 1987] a
conflict arises given a discrepancy between observed and
predicted values for a variable. Under fault conditions, con-
flicts are observed when the model described by a MEM is
evaluated with available observations and produce a discrep-
ancy, because the model equations and the input/measured
values are inconsistent [Reiter, 1987; de Kleer and Williams,

%A redundant set of equations would be an Evaluation Chain.
Since we are interested only on minimal conflicts, we just focus on
the set of MECs that are by definition minimally overdetermined.

1987]. This notion of possible discrepancy generation leads
to the definition of Possible Conflict:

Definition 4 (Possible Conflict). The set of constraints in a
MEC that give rise to at least one MEM.

Every MEC in the three-tank system has one MEM.
Hence, we have three PCs. Each MEM is the computational
model for a PC, and each equation in a MEM contains zero
or more parameters that can be the source of potential faults
(fcc in our model description). The set of parameters re-
lated to each PC is also shown in the fourth column in Ta-
ble 1. Given a non-zero residual, we then isolate the fault
parameters involved in the pc structural model: ©,.. This
information is the basis for the integration of Consistency-
based diagnosis of dynamic systems with Possible Conflicts
and LYDIA-NG.

4 On-line Fault diagnosis with LYDIA-NG
and PCs

In CBD, diagnosis must discriminate among 2V behavioral
mode assignments when just correct, ok(-), and incorrect
modes, —ok(-), are present for N components. When B
behavioral models are allowed, diagnosis must discriminate
among BY mode assignments. This is the problem faced by
any model-based diagnosis proposal which attempts fault
identification [Dressler, 1996], and it is also present in
LYDIA-NG. In this section, we present an integration pro-
posal, where the system model is partitioned using PCs. As
explained in Section 2, the output of the consistency-based
diagnosis using PCs is a set of fault candidates C' defined
in the lattice provided by ©*. Then, this set of diagnosis
candidates is used as input to LYDIA-NG, thus reducing the
number of health state simulations that needs to be consid-
ered by LYDIA-NG.

In our integration proposal, the simulation model for each
PC uses some of the system measurements as input, and
provides an estimation for exactly one variable (the poten-
tial discrepancy). Then, an executable model, SD,,, for
each pc;, is built. This executable model can be a simulation
model, a state observer, or even a neural network [Pulido et
al., 2012]. Summarizing, the integration of LYDIA-NG and
CBD with PCs is possible given the set of candidates, C":
each candidate C; is a subset of ©,.. Then invoking II(C;),
LYDIA-NG can obtain the set of health variables, H c related
to C;, and use them as input for its search. Given the current
implementation of LYDIA-NG, we can obtain the system
description (system model) imposed by Hc¢ : o(M, He),
which is enough to characterize the current model and per-
form simulation of the H c health status.

Algorithm 2 shows the algorithm for our integrated diag-
nosis framework. Y),., denotes the set of input observations

available for the executable model of a PC, SD,,,; and Y};q
represents the set of predictions obtained from SD,,,. The
function OBTAINOBSERVATIONS obtains from the diagnos-
tic scenario the observations which have to be used as input
for each PC. Function ESTIMATEBEHAVIOR provides an
estimation of a measured variable by using the executable
model of each PC (either a simulation model, a state ob-
server model, or a neural network).

For the detection part, to determine significant deviations
from the PC residuals (PC residuals are computed by using
an absolute residual function). We use the Z-test for robust
fault detection using a set of sliding windows as detailed



in [Daigle er al., 2010]. A small window, No, is used to
estimate the current mean of the residual signal, p,.. The
variance of the nominal residual signal is computed using a
large window N preceding N>, by a buffer Ny, which
ensures that /V; does not contain any samples after fault oc-
currence. The variance and the confidence level determined
by the user are then used to dynamically compute the detec-
tion thresholds ¢, and €.

Algorithm 2 Integrated PCs and LYDIA-NG diagnosis ap-
proach.

1: function PCS-LYDIA-DIAGNOSIS(SCN) returns a diagnosis
inputs: SCN, diagnostic scenario
local variables: Y, set of input observations
chi, estimation from the PC
Ope;, fault parameters involved in the PC
h, FDI vector, health assignment
p, real vector, prediction
(), a set of diagnostic candidates
DIAG, diagnosis, result
2 repeat
3 Y,e, <~ OBTAINOBSERVATIONS(SCN)
4 Ype, < ESTIMATEBEHAVIOR(SDpe;, Ype, )
5: Tpe; < COMPUTERESIDUALPC (Ype,, Ype, )
6: if Z-TEST(rpe,;) < €5 OF Z-TEST(7pc;) > €, then
7 Opc; = confirm pc; as a real conflict
8 C — MHS(C, O,,)
9 end if
0 until Every pc; is activated or time elapsed or a unique
fault candidate has been isolated

11: while h — NEXTHEALTHASSIGNMENT(IL, C) do
12: p < SIMULATE(M,~, h)

13: r < COMPUTERESIDUALLYDIA(p, &)

14: Q—QUh,r)

15: end while

16: DIAG « COMBINECANDIDATES((2)

17: return DIAG
18: end function

Once the initial set of fault candidates has been isolated,
the LYDIA-NG part of the algorithm is run (as shown in
algorithm 2). The algorithm takes the set of isolated fault
candidates as input, and the NEXTHEALTHASSIGNMENT
function only considers the health assignments related to the
fault candidates. In this version of the integrated framework,
the global system model is used as the simulation model,
instead of the PC submodels, thus providing a more direct
way to integrate both approaches. In future versions, the
PC submodels will also be used as the simulation model in
LYDIA-NG, thus providing faster simulation results.

5 Results

In this section we show some diagnosis results for our in-
tegrated framework. We first discuss the nominal situation,
then, we present an on-line fault diagnosis scenario for a
particular fault in the three-tank system and discuss the re-
sults obtained.

5.1 Nominal Scenario

For the nominal scenario, none of the three PCs found for
the system is triggered. The advantage of including PCs
within the LYDIA-NG framework is evident in this case.
Since none of the PCs is triggered, LYDIA-NG is not run,

thus avoiding the time-consuming simulations for the dif-
ferent health states when no actual fault has occurred in the
system.

5.2 On-line fault diagnosis

This section briefly describes how LYDIA-NG runs with and
without the use of PCs. The first phase is residual analy-
sis, where LYDIA-NG runs a set of simulations such that a
residual is computed for each simulation. Because LYDIA-
NG uses real-value health variables, the space of potential
diagnostic assumptions, and the corresponding set of sim-
ulations, is enormous, and infinite in the worst case. The
heuristics used for generation of diagnostic assumptions are
critical to the success and efficiency of LYDIA-NG.

LYDIA-NG ranks the residual outputs, discarding those
candidates whose residual value is larger than the residual
of the “all nominal” candidate. The remaining candidates
are assigned probabilities of occurrence, using a method de-
scribed in [Feldman er al., 2013]. The fault isolation pro-
cess assigns probabilities of failure to system components,
and these are reported as ranked diagnoses.

In the following we compare the results for running
LYDIA-NG with and without PCs. Without PCs, LYDIA-
NG uses the global system model described earlier; with
PCs (i.e., using Algorithm 2), the generation of diagnostic
assumptions is governed by the PC-based algorithm.

For a diagnosis scenario with a 40% blockage fault in
valve Ry occurring at time 100 s, our results are as follows.

Non-PC-based Approach: LYDIA-NG computes resid-
uals based on the difference between the pressures. The
non-zero residual at time 104 s creates a set of simulations in
which LYDIA-NG analyzes several valve %-blockage cases
for Ry, Rs and R3. LYDIA-NG estimates the valve posi-
tions by “guessing” the true valve positions and computes
the health probability by subtracting the commanded valve
position from the estimated one. LYDIA-NG is able to iso-
late the most-likely fault as (R1, 40%).

PC-based Approach: When computing diagnoses for
this fault, at time 104 s, an increase in the residual of PCY
is detected, and consequently k1, ko, and A, are selected as
the initial set of fault candidates. At the next time step, at
time 105 s, PC| is triggered, thus selecting k1 and A; as
possible fault candidates. A minimal hitting set algorithm is
run, determining that the only single fault candidate in the
system is k1. At this point, the fault identification for k; is
triggered by using LYDIA-NG.

Running this diagnosis scenario with a (trivial) input of
R; (as derived from the candidate k1), as opposed to Ry, R
and Rj3, results in an 80x speedup of LYDIA-NG as com-
pared to the non-PC approach. This is a result of reducing
the diagnosis assumption space.

6 Related work

LYDIA-NG belongs to a class of MBD methods that use
continuous-valued models and sensor data, and use entropy
based methods for test selection to disambiguate diagnoses.
It is a generalization of LYDIA-NG, which used discrete-
value models.

In terms of diagnostics solvers, LYDIA-NG is related to
the HyDE (Hybrid Diagnosis Engine) solver [Narasimhan
and Brownston, 2007]. Another solver, FACT [Daigle et al.,
20101, can also use continuous-valued models and sensor
data, but requires that the model be represented as a hybrid



bond graph. Given an anomaly, FACT first uses an observer-
based approach (adopted from the FDI community) with
statistical techniques for robust fault detection.

Recent works have demonstrated the similarities between
model-based diagnosis approaches from the DX and the FDI
communities [Cordier er al., 2004]. In such framework,
it has been demonstrated the equivalence of several struc-
tural model decomposition techniques such as PCs, minimal
ARRs and Minimally Structurally Overdetermined sets [Ar-
mengol et al., 2009]. As a consequence, the proposal in this
work can be easily extended to other structural methods.

Using CBD we need to generate the set of candidates C
and wait for every PC to be confirmed. An FDI approach
would use exoneration using the structural information in
the set of PCs. In CBD we wait for additional observations
in order to reject modes that are not consistent with avail-
able information. Combining our results with LYDIA-NG
provides an additional boost for candidate discrimination by
including fault models through health variables.

7 Conclusions

This work has presented an integrated framework for on line
fault detection, isolation and identification of dynamic sys-
tems.

Two different approaches have been integrated: The
LYDIA-NG suite of diagnosis algorithms and the PCs
framework for on-line CBD. LYDIA-NG is a simulation
based diagnosis system that filters out diagnosis candidates
discarding those of them that generates residuals larger than
the all-nominal assumption, i.e., fault free and nominal sys-
tem configuration. Although the system incorporates im-
portant facilities, such as diagnostic test generation based
on entropy measure, its main drawback is the lack of focus
for the initial set of candidates, which may be large, and the
cost of simulating the complete system for every considered
candidate. On the contrary, the set of PCs identifies min-
imal computational subsystems that decompose the com-
plete system and that can be simulated independently. PCs
are based on Reiter’s theory of diagnosis from first princi-
ples and are able to generate fault isolation candidates from
model of correct behavior without hypothesizing an initial
set of candidates. Hence, using consistency-based diagnosis
with PCs candidate generation is rather efficient, although
additional techniques are required to further refine fault can-
didates for fault isolation and identification. They also lack
some of the facilities incorporated in LYDIA-NG, like gen-
eration of diagnostic tests.

Our three-tank system running example shows the poten-
tial of this approach. First, when the system is fault free, no
PC becomes a real conflict and no candidate is generated.
This avoids running LYDIA-NG for fault detection, which is
performed by the PCs approach, thus potentially providing a
significant saving on computing time, depending on the size
of the complete system and on the number and overlapping
degree of the PCs. Second, when a fault is detected, PCs
may generate a low number of fault candidates, depending
on the number of PCs and its overlapping degree but also on
the real faulty parameter, thus providing an automatic focus
for LYDIA-NG fault candidate search.

References

[Armengol et al., 2009] J. Armengol, A. Bregon, T. Escobet,
E. Gelso, M. Krysander, M. Nyberg, X. Olive, B. Pulido,

and L. Travé-Massuyes. Minimal Structurally Overdetermined
sets for residual generation: A comparison of alternative ap-
proaches. In Proceedings of the 7th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Processes,
SAFEPROCESS09, pages 1480-1485, Barcelona, Spain, 2009.

[Bregon er al., 2012] A. Bregon, G. Biswas, and B. Pulido. A
Decomposition Method for Nonlinear Parameter Estimation in
TRANSCEND. [EEE Trans. Syst. Man. Cy. Part A, 42(3):751-
763, 2012.

[Cordier et al., 2004] M.O. Cordier, P. Dague, F. Lévy, J. Mont-
main, M. Staroswiecki, and L. Travé-Massuyes. Conflicts ver-
sus Analytical Redundancy Relations: a comparative analy-
sis of the Model-based Diagnosis approach from the Artifi-
cial Intelligence and Automatic Control perspectives. [EEE
Trans. on Systems, Man, and Cybernetics. Part B: Cybernetics,
34(5):2163-2177, 2004.

[Daigle et al., 2010] M. Daigle, I. Roychoudhury, G. Biswas,
X. Koutsoukos, A. Patterson-Hine, and S. Poll. A com-
prehensive diagnosis methodology for complex hybrid sys-
tems: A case study on spacecraft power distribution systems.
IEEE Transactions of Systems, Man, and Cybernetics, Part A,
4(5):917-931, September 2010.

[de Kleer and Williams, 1987] J. de Kleer and B. C. Williams.
Diagnosing multiple faults. Artificial Intelligente, 32:97-130,
1987.

[Dressler, 1996] O. Dressler. On-line diagnosis and monitoring of
dynamic systems based on qualitative models and dependency-
recording diagnosis engines. In Proceedings of the Twelfth Eu-
ropean Conference on Artificial Intelligence, ECAI-96, pages
461-465, 1996.

[Feldman et al., 2013] Alexander Feldman, Helena Vicente
de Castro, Arjan van Gemund, and Gregory Provan. Model-
based diagnostic decision-support system for satellites. In
Aerospace Conference, 2013 IEEE, pages 1-14. IEEE, 2013.

[Isermann, 2006] R. Isermann. Fault-Diagnosis Systems. An In-
troduction from Fault Detection to Fault Tolerance. Springer,
2006.

[Narasimhan and Brownston, 2007] S. Narasimhan and
L. Brownston. Hyde-a general framework for stochastic
and hybrid model-based diagnosis. In Proc. 18th International
Workshop on Principles of Diagnosis (DX07), Nashville, USA,
pages 162-169. Citeseer, 2007.

[Pulido and Alonso-Gonzalez, 2004] B. Pulido and C. Alonso-
Gonzédlez. Possible Conflicts: a compilation technique for
consistency-based diagnosis. IEEE Trans. on Systems, Man,
and Cybernetics. Part B: Cybernetics, 34(5):2192-2206, Oc-
tubre 2004.

[Pulido et al., 20011 B. Pulido, C. Alonso, and F. Acebes. Lessons
learned from diagnosing dynamic systems using possible con-
flicts and quantitative models. In Engineering of Intelligent Sys-
tems. XIV Conf. IEA/AIE-2001, volume 2070 of LNAI, pages
135-144, Budapest, Hungary, 2001.

[Pulido er al., 2012] B. Pulido, J.M. Zamarrefio, A. Merino, and
A. Bregon. Using structural decomposition methods to design
gray-box models for fault diagnosis of complex systems: a beet
sugar factory case study. In A. Bregon and A. Saxena, edi-
tors, Procs. of the First European Conference of the Prognos-
tics and Health Management Society, pages 225-238, Dresden,
Germany, July 2012. www.phmsociety.org.

[Reiter, 1987] R. Reiter. A Theory of Diagnosis from First Prin-
ciples. Artificial Intelligence, 32:57-95, 1987.



