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Abstract

Finite integer domains offer an intuitive represen-
tation of fault diagnosis models of real-world sys-
tems. Approaches that encode multi-valued mod-
els to the Boolean domain suffer from combina-
torial explosion. Prompted by recent advances in
multi-valued SAT solving, in this paper we present
a multi-valued diagnosis algorithm. This sound
and complete algorithm is based on multi-valued
SAT and A*, and does not require Boolean encod-
ing. The resulting diagnostic engine is specifically
designed to suit the characteristics of the diagno-
sis search and better exploits the locality which
is present in the multi-valued variable domains of
a wide-range of model-based diagnosis problems.
Results from experiments on both synthetic and
real-world problems are in agreement with recently
reported good performance of multi-valued DPLL
consistency checkers. Models used for experimen-
tation include NASA’s X-34 propulsion system and
ASML’s wafer scanner subsystems. The empirical
results show that, depending on the domain size and
number of variables, the multi-valued approach can
deliver up to two orders of magnitude speedup over
Boolean approaches.

1 Introduction

When considering a multi-valued model of the X-34 propul-
sion system [Sgarlata and Winters, 1997], one option is to
model it in the Boolean domain and to use a SAT based
diagnosis algorithm or, alternatively, to create a model, for
which each variable is in the finite-integer domain. The latter
approach allows for intuitive modeling of components with
multiple fault modes and discretization of continuous values
in areas like qualitative reasoning. Within this modeling tech-
nique, we face the choice of using directly a multi-valued di-
agnostic algorithm or, as an alternative, to encode the model
in the Boolean domain by using an appropriate mapping.
Boolean encoding is not without a price. Many diagnos-
tic (and SAT) algorithms work on a normalized representa-
tion of a model (e.g., CNF). In the Boolean encoding phase,
the model loses important locality information (treating the

different values of a variable in connection to each other in-
creases the reasoning speed). This problem of “breaking
apart” the multi-valued variables is often aggravated later
in the normalization as the Boolean encodings of a single
multi-value variable can be “spread-through” a model after
it has been encoded. Directly using a model represented
in multi-valued normal form preserves the locality while a
multi-valued diagnostic algorithm retains the simplicity of a
Boolean diagnosis algorithm.

The main algorithm, introduced in this paper, is a multi-
valued A* search which computes the diagnoses in best-first
order, starting with a minimal diagnosis (note that the diag-
noses produced subsequently are not necessarily minimal).
Thus, not all minimal diagnoses need be computed (the num-
ber of all minimal diagnoses can be still exponential in the
number of components [Vatan, 2002]).

The method, proposed in this paper, is not the only one
which achieves speed-up due to exploiting locality. A com-
plementing approach is to exploit system structure and hi-
erarchy [Feldman et al., 2005; Fattah and Dechter, 1995].
Reasoning in representations which are closer to the “raw”
model reduces the number of pre-processing transformation
steps and, in general, achieves faster diagnosis times. All
these techniques can be combined for achieving diagnosis in
real-time for a wide-class of real-world applications.

Surprisingly, there are few publications [Bandelj et al.,
2002] concerning the application of non-boolean search al-
gorithms to qualitative reasoning and model-based diagnosis.
In the satisfiability field, CAMA [Liu et al., 2003] is a novel
extension of the classic DPLL algorithm. The CAMA al-
gorithm uses unit-clause propagation and conflict-learning to
increase the performance of the satisfiability checking. Simi-
larly [Frisch and Peugniez, 2001] studies direct non-boolean
stochastic local search where a well-known Boolean SAT en-
gine (Walksat) is modified to handle non-boolean problems.
The authors of both CAMA and NB-Walksat find their ap-
proaches faster for multi-valued SAT instances with increas-
ing domain-size, compared to a Boolean DPLL run on the
equivalent Boolean encodings.

Encoding multi-valued problems in the Boolean domain is
a technique discussed in many papers. The study of the use
of both a Boolean truth maintenance system and the finite
domain approach for solving a class of constraint satisfac-
tion problems (CSP) dates back to [de Kleer, 1989]. The lat-



ter paper suggests sparse Boolean encoding for finite-domain
integer solvers. Multi-valued reasoning is complementary
to other locality-based diagnosis search techniques [Provan,
2001]. A study on the use of multi-valued propositional
encodings for finite-domain variables and the possibility of
combinatorial loss-of-performance due to the increase of the
propositional theory size, however, is beyond the scope of
that paper.

CSP-based algorithms for model-based diagnosis [Sachen-
bacher and Williams, 2004; Williams and Ragno, 2004] al-
ready consider multi-valued variable domains. An extensive
study has been performed on CSP decomposition techniques
[Stumptner and Wotawa, 2003] and some empirical results
discussed by the same authors in [Stumptner and Wotawa,
2001] show good performance results. The latter decomposi-
tion technique results in faster diagnosis time due to tractabil-
ity achieved by transforming the original problem to an equiv-
alent one with restricted structure. Our technique differs from
the above by the fact that it is based on multi-valued propo-
sitional search, hence allowing more aggressive optimization
by borrowing learning algorithms and heuristics from the sat-
isfiability domain.

The method discussed in this paper can be generalized to
almost any approach for propositional reasoning. Multiple-
valued decision diagrams (MDD) [Srinivasan er al., 1990]
are a natural extension to binary decision diagrams (BDD).
To our knowledge the state-of-the-art compilation technique
of Darwiche [Darwiche, 2004] has not been generalized to
multi-valued propositional logic. Hence an approach simi-
lar to ours would be complementary to this method. Simi-
larly, a propositional truth-maintenance system (TMS) (e.g.,
[Nayak and Williams, 1998]) and Boolean model-based rea-
soning systems [Frohlich and Nejdl, 1997] can benefit from
being able to reason over non-boolean literals.

The type of Boolean encoding influences the performance
of the DPLL search and the topic is further studied in [Hoos,
1999]. This paper distinguishes between compact and sparse
encodings (also referred to as unary and binary in other pa-
pers) and compares the performance of a state-of-the art CSP
solver and a Boolean SAT consistency checker. The results
show increased performance of the multi-valued approach.

A hybrid finite-domain constraint solver for circuits is sug-
gested in [Parthasarathy et al., 2004]. This approach com-
bines a Boolean DPLL checker and a finite-domain integer
CSP solver to allow for more compact problem represen-
tation, avoiding the house-keeping constraints imposed by
unary or binary encodings (where the number of variables is
not a power of 2). This results in a faster solver which has
wide application including consistency-based fault diagnosis.

The algorithm described in this paper provides a sound and
complete method for computing diagnoses in best-first order.
Heuristic functions working on multi-valued representations
are provided with additional locality information in compari-
son to their counterparts working on encoded Boolean mod-
els. The extra search dimension which is added by the multi-
valued domain of the model variables facilitates faster com-
putation of leading diagnoses. In particular, our method is
compared to Boolean algorithms working on both sparse and
dense encodings. Sparse encoding leads to combinatorial ex-

plosion even with small models, while dense encoding, still
slower than the multi-valued approach, imposes difficulties
on constructing efficient heuristic functions. All this moti-
vates the use of the direct multi-valued reasoning described
below.

The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce some basic terminology and show a multi-
valued consistency checking algorithm, which will be used
later in the diagnosis process. In Section 3 we describe the
main diagnostic algorithm and illustrate its workings with a
small example. Section 4 contains experimental performance
results. Finally, conclusion, notes and future works are pre-
sented.

2 Multi-Valued Satisfiability

The technique presented in this paper searches for a diagnosis
by checking for consistency of a possible health assignment,
the system description, and the observation, while discarding
the states which are inconsistent. The consistency check is
done using a DPLL-based algorithm in the multi-valued do-
main. The main difference between the multi-valued DPLL
and its well-known Boolean counterpart comes from the fact
that a multi-valued consistency checking routine can branch
on more than two values. Before we show this multi-valued
variant of DPLL and discuss the opportunities for its opti-
mization, we introduce the basic terminology necessary for
multi-valued satisfiability.

Definition 1 (Multi-Valued Literal). A multi-valued variable
v; € V takes a value from a finite domain, which is an integer
set D; = {1,2,...,m}. A positive multi-valued literal l;f is
a Boolean function l;f = (v; = dg), where v; € V,dy, € D;.
A negative multi-valued literal I is a Boolean function [; =
(v; # dy), where v; € V,dy, € D;. If not specified, a literal
l; can be either positive or negative.

Note, that a variable v; can assume at most one value or its
complement in D;. The need for having negative literals
comes from the fact that frequently in models, the process
of converting to multi-valued CNF results in many negations.
For a variable with sufficiently large domains using this nota-
tion instead of all complementary values leads to significantly
shorter formulae. Next we introduce a multi-valued conjunc-
tive normal form (CNF) which will be our representation for
the diagnostic problem’.

Definition 2 (Multi-Valued CNF). A multi-valued conjunc-
tive normal form is a conjunction of disjunctions of multi-
valued literals, that is C = o1 Aoas A ... Ao, and 0; =
liaVigV...Vigfori=1...n.

Throughout this text we will also use an alternative notation
for a formula in CNF — a clausal set. In this case the clausal
set is a set of clauses and each clause is a disjunction of multi-
valued literals.

Definition 3 (Multi-Valued Assignment). A multi-valued as-
signment ¢ or a multi-valued term is a conjunction of multi-
valued literals, thatis ¢ = {1 Ala A ... Al

'"Translation from multi-valued propositional logic to multi-
valued CNF is well-studied and we will omit it for brevity.



Obviously, we can convert a multi-valued assignment to a
clausal set in which each clause contains a single literal, and
vice-versa, by using the De Morgan’s law: [; Ala A.. . Al, =
—ly V =la V...V =l The latter proves useful when, later in
Algorithm 2, we have to add an observation represented as an
assignment to the clausal set of the system description.

If an assignment contains all the variables in a multi-valued
CNF we will call it full, otherwise it is partial. Next we de-
scribe an algorithm, which given a multi-valued CNF C' re-
turns T'rue iff there is an assignment (a conjunction of liter-
als) ¢ such that C' = ¢.

The worst-case time complexity of Algorithm 1 is expo-
nential of the number of variables in ¢. Formulae from
model-based diagnosis, however, are highly structured and
rarely expose this worst-case performance. If we consider all
the domain sets D; € D, the one with the highest cardinality
is dmax = argmaxp,ep |D;|, that is diax is the number of
values in the largest variable domain in ¢. The space com-
plexity of Algorithm 1 is then O(|V| X dpax), Where |V is
the number of variables in ¢.

Algorithm 1 Multi-valued DPLL consistency checking.
function MVSAT(C,V, D, ¢)
inputs: C, a clausal-set
V = {v1,v2,...,v4}, aset of variables
D ={D1,D,,...,Dy}, aset of domain sets
¢, an assignment, initially empty

if (¢ < ¢ A UNITPROPAGATE(C, ¢)) =L then
return False

end if

5: if Ao € C,0 A ¢ [~L then

return 7' rue

end if

forall {v; e Vke D;:l=(v;=k),l € ¢} do
if MVSAT(C,V,D,¢ Al) =T then

10: return T'rue

end if

end for

return False

end function

The workings of Algorithm 1 is very similar to the original
Boolean algorithm, except that it branches for every possi-
ble value of the selected variable v;. An important part of
the algorithm is the unit propagation, implemented in the
UNITPROPAGATE routine. Note that, unlike in the Boolean
case, unit-propagation works only for clauses which are unit-
open with a free positive literal (in the Boolean case we can
assign a value to negative literals as well).

Algorithm 1 is subject to the same optimization techniques
as the Boolean DPLL. An important source of speed-up can
be conflict learning®. In addition to the classical Boolean

?Actually, in the cases of inconsistent input we need a conflict
extraction mechanism, the result of which is to be used for pruning
the diagnostic tree in Algorithm 2. Due to the limited scope of this
paper we will not discuss mechanisms for conflict extraction.

speed-up methods, an additional source of speedup would be
the use of various heuristic techniques which are possible due
to the extra search dimension caused by the multiple values.
When choosing a value for a given variable, for example, it is
possible to select (either dynamically for the remaining val-
ues and clauses or statically) the one which will satisfy the
biggest number of clauses.

Algorithm 1 has the potential of determining faster satisfi-
ability in comparison to a Boolean DPLL running on an en-
coding. Consider the example formulaC = (((x = 1)V (y =
2)A((x=3)V(y #1))), with the domains of the variables
zand y, D, = {1,2,3} and D, = {1,2}, respectively. A
sparse Boolean encoding would map x = 1 to x1, ¢ = 2 to
T2, = 3toxs, y = 1toy; and, finally, y = 2 to y. In addi-
tion to that it needs to impose the constraints x1 # xs, 1 #
x3,Ts # w3 and y; # yo. The sparsely encoded Boolean for-
mulais Cs = (1 Vy2) A(x3V-yr)A(x1 Ve Vas) A (- V
ﬁl‘g) A\ (ﬁxl \Y ﬁfL‘3) A\ (ﬁxg V ﬁfL‘3) A\ (yl \/yg) A\ (ﬁyl V ﬁyg).
While the multi-valued formula C' has 2 variables with 2 and
3 values each and total of 2 clauses, its Boolean encoding C'
has 5 variables and 8 clauses. In the multi-valued case we can
determine the satisfiable assignment (z = 2) A (y = 2) in4
steps only (ignoring the effect of the unit propagation), while
in the Boolean encoding we have to perform 6 recursive calls.

3 Diagnosis of Multi-Valued Models

Modeling of physical artifacts and representing them by using
first-principles is a topic on its own and in this paper we will
assume that a correct model is converted to a multi-valued
CNF and what remains to perform is the computationally in-
tensive task of finding all possible explanations of a given
observation. In order to suggest such an algorithm we first
formalize the notion of a diagnostic problem and diagnosis.

Definition 4 (Diagnostic Problem). A multi-valued diag-
nostic problem DP is defined as the ordered triple DP =
(SD, H, OBS), where SD = (V, D, C) is the set of variables,
their domains and a system description represented as a multi-
valued CNF, H is a set of health variables such that H C V'
and the observation OBS is a variable assignment over some
of the variables in V' \ H.

If a device is malfunctioning then assigning nominal values
(let us name such a nominal assignment z) to all the health
variables of its model manifests an inconsistency with the ob-
servation, i.e., OBSUSDU z [=_L. A sound and complete di-
agnostic algorithm has to find all assignments which explain
the observation OBS, thatis Vz : z € X, OBSUSDU z [~L.

Definition 5 (Multi-Valued Diagnosis). A diagnosis or par-
tial diagnosis for the system DP = (SD, H,OBS), SD =
(V,D,C) is the assignment x = I3 Ala A ... Al, such that
SDAOBS Az l~L.

The central problem of model-based diagnosis is that for n
health variables we may have as much as 2" possible diag-
noses. In the multi-valued domain, the complexity is even
worse due to the multi-valued domains of the variables, i.e.,
it becomes O(d™), where d is the cardinality of the biggest
domain set. Although the number of diagnoses depends on
the model (e.g., if it is a weak or strong fault model) and the



size of the observation, we rarely need all diagnoses. An in-
formed search strategy such as A* is a suitable method for
computing only these diagnoses which optimize an objective
function g. Such an approach allows us to stop the diagnostic
algorithm after we have found the first /NV diagnoses maximiz-
ing g.

As a heuristic function, we typically employ a greedy es-
timator of the probability of an assignment ¢. Let us assign
a-priori probabilities to all possible values of all health vari-
ables. The a-priori probability function of a health variable
h; we define as p;(h;), where 0 < p;(z) < 1, 2z € D; and
> wep, Pi(z) = 1. The probability estimator of a health
assignment ¢ = Iy Ala... A ...l is defined as g(¢) =
p1(h1)p2(ha) .. .pn(hy), where hy, ha, ..., h, are all health
variables h; € H and:

pl(lg) if l+ S QZS
p(hs) = 1—pi(ly) 1fl €o )
arg max,c p. pi(k) otherwise

Next we show the actual multi-valued A* algorithm for
model-based diagnosis.

Algorithm 2 Multi-Valued A* Diagnosis.
procedure MVA*(SD, OBS)
inputs: SD = (V, D, C)), a system model
OBS, an observation term
local variables: (), a priority queue
z, a health assignment

PUSH(Q), INITIALSTATE())
while (z —PoP(Q)) = L do
if MVSAT(SDU OBSU z,V, D, () then
5: if ISFULLDIAGNOSIS(h) then
OUTPUTDIAGNOSIS(x)
ENQUEUESIBLINGS(Q, SD U OBS, )
else
PUSH(Q,CHILDSTATE(SD U OBS, x))
10: end if
else
ENQUEUESIBLINGS(Q, SD U OBS, )
end if
end while
15: end procedure

An implementation of (1) is used for the ordering in the prior-
ity queue . For the manipulation of the nodes in this queue
(each node is an ordinary multi-valued health assignment) we
use the standard functions PUSH and POP, the latter returning
1 when the queue is empty.

The queuing of the nodes is performed by the CHILD-
STATE and ENQEUESIBLINGS routines. The former extends
a partial assignment with its most probable descendant and
the latter pushes on the queue the most probable siblings of
each ancestor of the current node. Note that due to the fact
that the search is non-systematic we have to keep a list of
the visited nodes (this can be organized somewhat more opti-
mally in a trie).

As in many cases diagnostic models can be over- or under-
constrained (depending on the modeling technique), Algo-
rithm 2 can be extended with conflict-learning mechanism for
pruning parts of the search tree [Williams and Ragno, 2004].
Finding the set of all minimal conflicts is a problem which
is itself NP-hard, hence such a technique has no choice but
to perform a limited amount of analysis (e.g., through resolu-
tion) for finding conflicts of good quality.

We will illustrate the advantages of the multi-valued diag-
nosis with a simple model of a valve. The health state of the
valve we denote as the health variable h, the control variable
c denotes the commanded position of the valve, and for the
input and output we use ¢ and o, respectively.

The domains of the four variables h, ¢, i, and o, are Dy, =
{1 (nominal), 2 (stuck open), 3 (stuck closed), 4 (unknown)},
D; = D, = {1 (low pressure), 2 (high pressure)}, and D, =
{1 (open), 2 (close)}, respectively. Additionally, we define
the a-priori probability estimator of h as p(h = 1) = 0.9,
p(h = 2) = p(h = 3) = 0.045, and p(h = 4) = 0.01. The
model is encoded as the multi-valued propositional formula:

bz

= Cc = = (0 =

M=9 (h=2)=(0=1) @
(h=3)=(0=1)

Next we convert M to a clausal set and the result is the fol-
lowing:

(=2 V(i=2)V(o=1)V(h#1)
((c=2)V(i=1)V(o=2)V (h#1))

oo ) (e=1vio=1v D) o
((i=2)V(o=1)V(h#2))
(i=1)V(o=2)V (h#2)

(0=1)V (h #3))

Let us assume an observation OBS = (¢ = 1) A (i = 2) A
(o = 1), that is the valve is stuck-open. The first step of
Algorithm 2 would be to check the health assignment z; =
(h = 1) which has the highest probability estimator P(z1) =
0.9. Algorithm 1 will determine that SD U OBS U x1 =1,
hence we have to try the second-probable health-assignment
22 = (h = 2) and in this case we have SD U OBS U x5 £ L.
In this case x5 is a diagnosis and due to the admissibility of
the heuristics involved, we can pronounce x5 to be the most-
likely diagnosis.

Next, we consider the sparse Boolean encoding of C' (nor-
mally, we would encode M as M, and convert M, to CNF
which is even worse than encoding directly C' to C5) in (3).
To preserve the order in which we generate diagnoses, we
assign a probability estimator p’(h,,) to each Boolean health
variable h,, encoding a state h = n. We define p(h,) =
p(h =n)and p(—h,) = 1—p(h = n). Itis easy to show that
such an assignment of the probability estimators preserves the
order in which diagnoses are generated.

(02\/22\/01\/—‘h1) (Cz\/i1\/02\/—‘h1)

(C1 Vo1V ﬁh1) (Z2 Vo1V ﬁhQ)

(7,1 V o3 V —|h2) (01 Vv —|h3)

(C1 Vv Cz) (ﬁcl V ﬁCz) A (i1 V iz) 4)
(—"Ll V —|Zz) A (01 Vv 02) A (—‘01 Vv —‘02)

(hl V hz) (hl V h‘;) (hz V h‘;)

(—‘hl Vv —|h2) (—‘hl V —‘hg) A (‘!hz Vv —‘hg)

A dense encoding of C' results in a shorter representation,
having the same number of clauses as in the multi-valued



CNF:

(h1 Vh2VeViV-o)
(h1\/h2\/c\/0\/—|i)
(h2 V h1V =cV —0)
(
(

Ca ha ViV =h1 V —0) )

ha VoV =hy V i)
(h1 V —hs V —|O)

While in this example Cy is as compact as Cs, we have
twice as many health variables and we would need 8 instead
of 4 consistency checks if we were to add an extra health
state for A in (2). The dense encodings expose another signif-
icant problem with representing the probability estimator as
the health variables h; and ho are not independent. Another
disadvantage of the dense encoding is apparent in the cases
when the number of states for a multi-valued variable is not
a power of 2 (i.e., k # 2™ for n € N, where n is the number
of states of a variable v). In this case additional constraints
should be added or 2" — k states would use two Boolean en-
codings per state (such health encodings, however, would re-
sult in 2" — k cases in which the same diagnosis is computed
twice, necessitating the storing of the already generated diag-
noses).

A Boolean A* diagnosis® on the sparse-encoded model has
to perform 23 consistency checks in (4) for finding all diag-
noses, while Algorithm 2 computers all of them with 3 checks
only (in addition to that multi-valued consistency checking is
more efficient as we have seen in Section 2). With dense
encodings we need 4 consistency checks which is still less
efficient than the multi-valued case.

The performance difference is better illustrated when we
are interested in the first (most-likely) diagnosis only. In this
case the multi-valued algorithm needs 2 consistency checks
over a clausal set comprising 6 clauses, the sparse encodings
allow computation of a leading diagnosis with 5 checks over
18 clauses and the dense encodings do not facilitate an im-
plementation of a heuristic function preserving the probabil-
ity order. The number of clauses in Cj is 18 due to the extra
inequality constraints which additionally delays the Boolean
reasoning. As we are going to show in the next section, these
differences translate to significant savings (in favor of the
multi-valued approach) with bigger models.

4 Experimental Performance Evaluation

To demonstrate the improved performance of the multi-
valued solver we have compared it experimentally with the
performance of a Boolean solver for sparse and dense en-
coded models. In these experiments we use the diagnosis
time ¢ as performance metric. This is the processing time
required to generate N diagnoses, for given OBS. It is mea-
sured by the diagnosis engines as CPU time in milliseconds.
All the experiments described in this paper are performed on
a 3 GHz Pentium IV CPU.

The algorithm discussed in this section were performed as
a part of the LYDIA model-based diagnosis toolkit*. The

3Note that (4) can be considered as a multi-valued diagnosis
problem with two values per variable.

“The LYDIA package for model-based fault diagnosis can be
downloaded from http://www.fdir.org/lydia/.

benchmark models and test-vectors are available upon re-
quest. The multi-valued polycell models, discussed below
were synthetically generated. Our experimentation could fur-
ther benefit from the existence of a scalable multi-valued
benchmark for model-based diagnosis.

For a multi-valued problem and its sparse and and dense
encodings, we denote t with t,,, ts, and t; respectively.
The speedups ss and sq of the multi-valued search over the
Boolean sparse and dense encodings respectively, are calcu-
lated as sy = ts/t;, and sq = tq/tm,. Let W denote the
non-observable, non-health variables, W = V' \ (OBSU H).
We investigate ¢, s and s in relation to the domain size |D;|
and model complexity.

As discussed in the valve example, |D;| and the type of
encoding determine the number of clauses and consistency
checks which affect ¢. Hence we investigate the relation be-
tween ¢ and |D;|. We use the well-known synthetic, integer
domain Polycell model [de Kleer and Williams, 1987] which
allows for practical and meaningful variation of |D;|. Let
|Dz| = dy, Vh; € H and |D1| = dw, Yw; € W. With
the Polycell we perform experiments for dg = 2,3,...,9
and dy = 2,3, ...,42, for nominal OBS with N equal to the
maximum number of consistent solutions K.

We perform similar performance experiments on real-
world models to investigate whether the expected improved
performance of the multi-valued approach also holds for prac-
tical applications. We use nine models of variations of ASML
wafer scanner subsystems and one of NASA’s X-34 propul-
sion system. In contrast to Polycell, these models have vary-
ing values of | D;| for H and W. Therefore we cannot inves-
tigate a one-to-one relationship of ¢ with |D;|. Instead, we
investigate the dependencies between ¢ and the model com-
plexity. We use S, the number of all possible value assign-
ments of A and W, as measure for this complexity. Let
Su = Ilp,eq |Dil, hi € H, Sw = 1, ew |Dil, wi € W,
and S = Sy Sy . Table 1 shows these numbers for all real-
world models and variations.

| Model E Sw | S |
ASMLI1A1 2241 2237 | 1.39F + 05
ASMLIA2 | 224! 24313 | 4.08E + 08
ASMLI1A3 2241 20319 | 1.19EF + 12
ASMLI1B1 2643 2237 | 3.58F + 07
ASMLIB2 | 21246 24313 | 428F + 14
ASMLIB3 | 21849 26319 | 511F + 21
ASML2A 210 | 91531410 | 1 06F + 14
ASML2B 210 | 93032420 | 1 09F + 25
ASML2C 210 | 94533430 | 1 12F + 36
X-34 226412 320 | 3.93F + 24

Table 1: Sy, Sw, and S for 10 real-world models and variations.

We consider three scenarios with OBS caused by nomi-
nal, single fault, and double faults for N = 1 and N =
min(|H|, K), respectively. Because we do not currently have
a probability heuristic in place for the dense encoding, its di-
agnoses is unsorted. Hence comparison with the sorted multi-
valued diagnosis for NV < K, is not always correct.



For the Polycell model Figure 1 shows a logarithmic plot of
t against dyy with dg = 2, for all encodings. For dyy — 42,
$s =~ 6 and sq ~ 1, the latter indicating similar performance.
The down-ward spikes in the dense encoding plots are due to
the efficient dense encoding for log, dyw € N. Experiments
performed with non-nominal or fewer observations show sim-
ilar results.
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Figure 1: Time for computing of all diagnoses for Polycell models
with dg = 2 and a nominal observation vs. variable dyy .

Similarly Figure 2 shows the results for dg = 3. For dyy —
42, s ~ 26 and sq4 ~ 3. Thus, except for the spikes at
dw = 16 or dy = 32 the multi-valued approach now also
clearly outperforms the dense encoding. This is due to the
inefficiency of dense encodings for log, dy ¢ N.
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e m
10 | | | | | | | |
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dw

Figure 2: Time for computing of all diagnoses for Polycell models
with dg = 3 and a nominal observation vs. variable dyy .

Figure 3 shows a double logarithmic plot of ¢ against dy.
We omit sparse encodings because ts for dy > 3 becomes
prohibitively large for practical experiments. The increase of
tq is exponential o< [log, dg ], hence the staircase shape of
this plot. Let y4(d g ) be the increase according to,

_ _ta(du|[logy du] = k)
’Yd(dH) o td(dHﬁlogQ ;H{I: k — 1)

For k = 2,3,4, y4(dy) ~ 17,21,31. The straight line for
multi-valued encodings agrees to ¢ < d 1°. The plot shows

k=234 (6

that for dg < 9 and log, di 1 [logy dir], sa < 1, i.e., better
performance for dense encoding.

As, t,, and tg4 for dg > 9 become prohibitively large for
experiments we need to extrapolate their relations with dg to
compute s,

fyd(dH)“ng du

Sq =
dy’®

)
If, e.g., we consider a conservative approach and assume
~va(dg) = 31, then 0.8 < s4 < 23.9, for dy < 256. If, as
expected from the experimental results -y;(dy) continues to
increase, then for v4(dy) > 25, 1.0 < s4 and the speedup
of multi-valued over dense encoding will not have an up-
per bound. Thus multi-valued encoding also has unbounded
speedup for dense encodings.
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Figure 3: Double logarithmic plot of time for computing of all di-
agnoses for multi-valued and dense encoded Polycell models with
dw = 42 and a nominal observation vs. variable dg.

For the real-world models, Figure 4 shows the double log-
arithmic plot for ¢ vs. S for N = 1 for the multi-valued solver
for nominal, single, and double faults. As expected, it shows
an increasing trend for ¢ vs. S, and for increased cardinality
of the faults. Figure 5 shows s, and s,. Note that data points
above the thick line s = 1 indicate an actual speedup of the
multi-valued approach. In the nominal case, s; < 1 which is
caused by a larger overhead of the multi-valued approach for
N = 1. The effect of this overhead disappears for single and
double faults where 10! < s; < 10%. Because of the omitted
probability heuristic mentioned earlier, the analysis of sg is
less straightforward. We note that in roughly half the cases
the speedup is similar to the sparse encoding.

Figures 6 and 7 show ¢ and s for N = min(|H|, K). As
N > 1 the initial overhead effect for the multi-valued ap-
proach is amortized over the multiple diagnoses resulting in
10! < s, < 10* for nominal, single, and double faults. For
Sd, it is interesting to see that the effect of the omitted proba-
bility heuristic is most apparent for the double faults. This can
be explained from the fact that in these cases the solver gen-
erates many-fault solutions with low probability faster than
the multi-valued solver generates true double-fault solutions.
The latter have higher ¢ because of more constrained consis-
tency checking.
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Figure 4: Double logarithmic plot of diagnosis time with N =
1 and observations consistent with different fault cardinalities vs.
variable model complexity.
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Figure 5: Double logarithmic plot of speedup with N = 1 and
observations consistent with nominal health (F' = 0), single fault
(F' = 1), and double fault (F' = 2) vs. variable model complexity.

In summary of the experiments, the speedup of multi-
valued approach over the sparse encoding is demonstrated
clearly both in relation to the domain size and number of
states. Speedups of 10? are readily achieved. The same
conclusion holds for dense encodings as far as the domain
size experiments are concerned. Especially for larger do-
main sizes the speedup is considerable. For smaller domain
sizes closer proximity to 2¢,4 € N means better performance
for the dense encodings. Because of the lacking probability
heuristic, the relation of s4 with S remains somewhat unclear,
despite the fact that sq4 > 5 in many cases.

5 Conclusion

This paper introduces a new algorithm for computing diag-
noses which works directly on the multi-valued representa-
tion of a model. The sound and complete algorithm com-
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Figure 6: Double logarithmic plot of diagnosis time with N =
min(|H|, K) and observations consistent with different fault cardi-
nality vs. variable model complexity.
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Figure 7: Double logarithmic plot of speedup with N =
min(|H|,K) and observations consistent with nominal health
(F = 0), single fault (/" = 1), and double fault (F' = 2) vs. variable
model complexity.

prises a DPLL-based multi-valued consistency checking and
a multi-valued A* search. The two routines eliminate the
need of model encodings, thus preventing loss of locality in-
formation which often leads to performance degradation.

In contrast to dense Boolean encoding, the multi-valued
A* algorithm allows an intuitive assignment and interpreta-
tion of a-priori probabilities, which combined with the greedy
A* search, described in this paper, allows for a precise con-
trol over the termination criteria for the diagnostic computa-
tion. This allows the generation of only these leading diag-
noses that contain significant probability mass (thus turning
the search into incomplete). While sparse Boolean encod-
ing is more suitable than dense encoding for heuristic search
based on a-priori probability, the combinatorial explosions
caused by the introduction of new variables makes it suitable
for the tiniest diagnosis problems only.

We have empirically compared the performance of the al-
gorithm to sparse and dense Boolean encodings. These exper-



imental results confirm our analysis and show that the multi-
valued search outperforms both types of encoding, in particu-
lar being two orders of magnitude faster than sparse Boolean
encoding. While dense encoding is faster than sparse encod-
ing (but still slower in comparison to the multi-valued ap-
proach), it is less amenable to heuristics based on a-priori
health probability estimation, widely used in model-based di-
agnosis.

In future work, we aim to address this estimator problem,
allowing the three methods to be compared not only in the
cases of generating all diagnoses but also when computing
the first V leading diagnoses. In this case we would be able to
analyze how the probability assignment influences the diag-
nostic search. Last, we note the need of representative multi-
valued benchmarks which would enhance the experimental
results of this paper.

Furthermore, we envision our algorithm used in combina-
tion with other reasoning-methods which result in improved
performance by using locality. Analysis [Ramesh et al.,
1997] and experience has shown that the higher-level rea-
soning engine we use (by higher-level we mean a diagnostic
engine which uses a model representation closer to the orig-
inal model), the faster performance results we get. In the fu-
ture, we would be interested in combining, e.g., non-clausal
search methods, hierarchical search [Feldman et al., 2005],
and the multi-valued approach described here for a more effi-
cient model-based diagnosis and related diagnostic reasoning.
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