
A Two-Step Hierarchical Algorithm for Model-Based Diagnosis

Alexander Feldman and Arjan van Gemund
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Mekelweg 4, 2628 CD, Delft, The Netherlands

Tel.: +31 15 2781935, Fax: +31 15 2786632, e-mail: {a.b.feldman,a.j.c.vangemund}@tudelft.nl

Abstract

For many large systems the computational complexity of
complete model-based diagnosis is prohibitive. In this paper
we investigate the speedup of the diagnosis process by ex-
ploiting the hierarchy/locality as is typically present in well-
engineered systems. The approach comprises a compile-time
and a run-time step. In the first step, a hierarchical CNF repre-
sentation of the system is compiled to hierarchical DNF of ad-
justable hierarchical depth. In the second step, the diagnoses
are computed from the hierarchical DNF and the actual obser-
vations. Our hierarchical algorithm, while sound and com-
plete, allows large models to be diagnosed, where compile-
time investment directly translates to run-time speedup. The
benefits of our approach are illustrated by using weak-fault
models of real-world systems, including the ISCAS-85 com-
binatorial circuits. Even for these non-optimally partitioned
problems the speedup compared to traditional approaches
ranges in the hundreds.

Introduction

Fault diagnosis is a computationally very demanding prob-
lem. In this paper we study mechanisms for exploiting hi-
erarchy in a divide-and-conquer approach to significantly
lower the computational cost. The potential of the hierar-
chical approach is to reduce the complexity of the diagno-
sis computation to that of the biggest subsystem in a model
(e.g., in a system comprising non-connected subsystems the
time for computing a global diagnosis is the sum of the times
for diagnosing each subsystem separately). For a class of
decomposable systems this may lead to substantial savings
in the diagnosis complexity. In this paper we present a hi-
erarchical approach where we demonstrate that real-world
systems may have sufficient hierarchy and subsystem inde-
pendence for such significant gains to be made.

Exploiting hierarchy has been the subject of much work.
In (Stumptner & Wotawa 2003), a diagnosis problem is rep-
resented as a Constraint Satisfaction Problem (CSP). In this
framework the issues of model decomposition and hierar-
chical diagnosis are discussed. The problem of discovering
hierarchies is also treated in (Provan 2001), while (Mozetič
1991) discusses methods for hierarchical abstraction. Im-
plicit system structure to speedup diagnosis is used in (Dar-
wiche 1998). Darwiche introduces the tractable decompos-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

able negation normal form (DNNF) which is a negation nor-
mal form with conjuncts not sharing literals. This represen-
tation can be compared to our hierarchical DNF (disjunctive
normal form) although the latter does not impose the restric-
tion on sharing variables at the price of some extra compu-
tational time. Our technique differs from the above work in
the fact that it allows for a configurable time/space trade-off
and formulates the basis for finding an optimal model com-
pilation.

A CSP-based algorithm (Fattah & Dechter 1995) uses
a method known as tree-clustering for circuit decomposi-
tion. The algorithm qualifies as a strict compilation tech-
nique as the resulting representation can be used for diag-
nosis in time polynomial to its size. Similar to the other
strict-compilation approaches this method does not provide
an adjustable size of the compiled representation. The algo-
rithm is especially suitable for circuits having nearly-acyclic
constraint networks.

Our approach comprises a compile-time and a run-time
step, both of which exploit the hierarchy of the models. The
input model is assumed to be represented in terms of a hi-
erarchical CNF (conjunctive normal form). In the first step
the model is compiled to hierarchical DNF where significant
speedup is obtained, compared to traditional CNF to DNF
compilation (e.g., in (Alexander Feldman & Bos 2005), is
achieved a speedup of 549 even for a 2-bit adder). The con-
version to DNF may still take exponential time, but this one-
only investment is amortized over many diagnoses (observa-
tions).

A special feature of the hierarchical CNF compilation is
that it can also compile to hierarchical DNF where the depth
of the hierarchy can be varied between fully hierarchical and
fully expanded (“flat”, i.e., ordinary DNF). This feature ad-
ditionally improves the diagnostic speed at run-time.

In the second step the compiled model, together with
the observations is solved, generating the diagnoses. The
diagnosis approach taken in this paper is based on an in-
formed search that exploits the hierarchy as far as still
present in the pre-processed model. In particular, we have
chosen A* using an admissible heuristics based on a-priori
health state probabilities such as in Conflict-Directed A*
(CDA* (Williams & Ragno 2004)), but other informed
strategies are possible. Although the choice for CDA*
would further improve performance, in our aim to assess
the potential of hierarchy, at present we have focused on

adapting the more simple A* algorithm to our hierarchical
framework.

We have compared the performance of the hierarchical al-
gorithm with the performance of a traditional A* diagnosis
search. Depending on the structure of the problem we ob-
serve speedups up to 270. In the worst case the hierarchical
approach performs similar to traditional A*, while speedup
of 20− 90 is measured for well-decomposed problems.

The rest of the paper is organized as follows. In the sec-
ond section we introduce concepts and terminology in tradi-
tional model-based diagnosis. In the third section we present
our compile-time and run-time diagnosis algorithms. In the
fourth section we present the performance results. Finally,
conclusions and notes for future work are presented.

Non-Hierarchical Diagnosis

We will base the hierarchical diagnosis approach on the
well-known model-based diagnosis formalisms introduced
by (de Kleer & Williams 1987). These classical approaches
in general use one level of hierarchy, i.e., the set of compo-
nents of which the overall system is built up.

Definition 1 (System). A diagnostic problem DP is defined
as the ordered triple DP = 〈SD, COMPS, OBS〉, where SD
is a set of propositional sentences describing the behavior of
the system, COMPS is a set of components, contained in the
system, and OBS is a term stating an observation over some
set of “measurable” variables in SD.

For brevity, we refer to the classical diagnosis approach as
“flat”, i.e., non-hierarchical. In the latter technique for each
component c ∈ COMPS there is a corresponding proposi-
tional variable hc representing its health state. We will call
these variables hc health variables and every instantiation of
∧

c∈COMPS hc a health state.

Definition 2 (Diagnosis). A diagnosis1 for the system
DP = 〈SD, COMPS, OBS〉 is a set D ⊆ COMPS such that

SD ∧ OBS ∧
[
∧

c∈D ¬hc

]

∧
[

∧

c∈(COMPS\D) hc

]

6|=⊥.

A diagnosis D is a minimal if no other diagnosis D′, such
that D′ ⊂ D, exists. A partial diagnosis P is such a con-
junction of health literals hc or ¬hc, c ∈ COMPS, that for
every other conjunction φ which contains P it follows that
SD∧OBS∧φ 6|=⊥. Similarly, a kernel diagnosis is a partial
diagnosis which is not contained in any other partial diagno-
sis (de Kleer, Mackworth, & Reiter 1992).

An informed search, such as the non-hierarchical A* al-
gorithm used by us, computes the diagnoses in best-first or-
der, starting with a minimal diagnosis (note that the diag-
noses produced subsequently are not necessarily minimal).
Thus, not all minimal diagnoses need be computed (the
number of all minimal diagnoses can be still exponential in
the number of components (Vatan 2002)). The hierarchical
search discussed in this paper, however, computers partial
diagnoses.

The diagnosis can be split in two phases: a compilation
step and a run-time step. The compilation step constitutes

1Throughout this paper we consider consistency-based diagno-
sis as opposed to abductive diagnosis.

a conversion of the system description into (preferably ir-
reducible) DNF. From DNF diagnosis is straightforward as
described by Proposition 1.

Proposition 1. Let DP = 〈SD, COMPS, OBS〉, be a system.
Then D is a partial diagnosis of DP iff the conjunction of
all the health variables of the elements in D is an implicant
of SD ∧ OBS.

From Proposition 1 it follows that to perform diagnosis, it
is enough to convert SD to any DNF and to check each term
in the DNF formula for consistency with OBS. Furthermore,
in order to generate all the minimal diagnoses, it is necessary
to compute a minimal cover of the prime implicants of SD∧
OBS (that is compute an irreducible DNF equivalent to SD).

In this paper we assume that all the components are de-
scribed in CNF. The non-hierarchical approach is illustrated
by diagnosing a small circuit, shown in Figure 1.

h1

h2

h3

ba

c

d

Figure 1: A circuit consisting of three inverters.

For a weak-fault model the corresponding propositional sys-
tem is given by:

SD =

{

(¬h1 ∨ a ∨ b) ∧ (¬h1 ∨ ¬a ∨ ¬b)
(¬h2 ∨ b ∨ c) ∧ (¬h2 ∨ ¬b ∨ ¬c)
(¬h3 ∨ b ∨ d) ∧ (¬h3 ∨ ¬b ∨ ¬d)

(1)

In (1), the health status of the component set COMPS =
{I1, I2, I3} is given by the health variables h1, h2 and h3.
Converting SD to an irreducible DNF results in: φ = (¬h1∧
¬h2∧¬h3)∨(¬a∧b∧¬h2 ∧¬h3)∨(a∧¬b∧¬h2 ∧¬h3)∨
(¬b∧c∧¬h1∧¬h3)∨(b∧¬c∧¬h1∧¬h3)∨(¬b∧d∧¬h1∧
¬h2)∨(b∧¬d∧¬h1∧¬h2)∨(¬b∧c∧d∧¬h1)∨(b∧¬c∧¬d∧
¬h1)∨(¬a∧b∧¬d∧¬h2)∨(a∧¬b∧d∧¬h2)∨(¬a∧b∧¬c∧
¬h3)∨(a∧¬b∧c∧¬h3)∨(¬a∧b∧¬c∧¬d)∨(a∧¬b∧c∧d).

Consider OBS = a∧¬c∧d over the observable variables
a, c and d. Instantiating φ with OBS gives us: φ ∧ OBS |=
(¬h1∧¬h2∧¬h3)∨ (¬b∧¬h2∧¬h3)∨ (b∧¬h1∧¬h3)∨
(¬b∧¬h1 ∧¬h2)∨ (¬b∧¬h2). Two implicants of φ∧OBS
form minimal diagnoses; these are D1 = {¬h2} and D2 =
{¬h1,¬h3} (and are the first ones to be generated by A*
for equal a priori health probabilities). Note, that in this
particular case D3 = {¬h1,¬h2,¬h3} is also a diagnosis
but it is not minimal.

The conversion to DNF in the above example can be ac-
complished off-line, thus demonstrating a non-strict compi-
lation approach.

Hierarchical Diagnosis
In order to present the two steps of our hybrid hierarchical
algorithm we introduce the notion of a hierarchical system
in terms of a tree-like data structure which includes ordinary
“flat” systems in its nodes.

Definition 3 (Hierarchical System). A hierarchical sys-
tem is a rooted, edge-labeled, acyclic multidigraph H =

〈V, ρ, E〉, where every node Vi, Vi ∈ V , contains a knowl-
edge base SDi and a set of components COMPSi. The multi-
digraph is such that COMPS1∩COMPS2∩. . .∩COMPSn =
∅. The root node is marked by ρ and the labels of the edges
in E are maps f : SDi → SDj between the literals in the
knowledge bases represented by the nodes Vi and Vj .

Furthermore, we define hierarchical CNF and hierarchical
DNF as hierarchical representation systems with the propo-
sitional knowledge base of each node Vi ∈ V in CNF or
DNF respectively. A hierarchical diagnosis problem is an
ordered pair HP = 〈H, OBS〉 where OBS is a term over
some observable variables in H . The size of a hierarchy
can be defined in terms of the size of the knowledge-bases
in the nodes of the hierarchy: |H | =

∑

e∈E |SDe|, where

|SDe| is the size (e.g., the number of terms if SD is DNF) of
the knowledge-base in the node in which edge e terminates.

In our approach we also consider the depth of a hierarchy
d, which is one of its fundamental parameters.

Definition 4. The depth d of a hierarchy H = 〈V, ρ, E〉 is
the number of nodes in the longest path from ρ to any node
v ∈ V such that v is of outdegree 0.

Hierarchical CNF to DNF Compilation

In this section we present the first part of our hybrid tech-
nique. Algorithm 1 modifies its input (a hierarchical CNF),
producing a hierarchical DNF of adjustable size. The in-
vestment of processing time in this algorithm translates to
increased compilation size and faster run-time diagnosis in
the second part of our technique.
The nested subroutine FLATTENNODE converts a CNF hi-
erarchy to a flat DNF by converting each node to DNF
and then multiplying the nodes alongside the multidigraph
edges. The function COMPILEDNF transform a node’s CNF
to DNF. This function is implemented using a slightly mod-
ified satisfiability checker (Davis & Putnam 1960).

We use Algorithm 1 in three configurations, depending on
the parameter t. Let d be the initial depth of the hierarchy H .
If t = d, then FLATTENNODE will never descend, and af-
ter FLATTEN finishes, H will be the original hierarchy with
each of its node converted from CNF to DNF. The result is
hierarchical DNF which we denote as DNF/H. On the other
extreme we may invoke FLATTEN with parameter t = 1. In
this case FLATTEN will fully flatten H , i.e., the result will
have one node only. The result of FLATTEN in this config-
uration we denote as DNF/F. FLATTEN is mostly used with
1 < t < d. The result of FLATTEN, then, will be a partially
flattened DNF (DNF/P) as the depth of the DNF/P is t.

To demonstrate Algorithm 1 we consider a small CNF
hierarchy H consisting of three nodes (V1, V2 and V3) and
two edges (e1 = 〈V1, V2〉 and e2 = 〈V1, V3〉). Let V1, V2

and V3 contain respectively SD1 = (¬h1 ∨ z) ∧ (x ∨ z),
SD2 = ¬h2 ∧ ¬x and SD3 = (¬h3 ∨ z) ∧ y. In this ex-
ample we will produce DNF/F, hence we invoke FLATTEN

with t = 1. In this case COMPILEDNF will be imme-
diately invoked on ρ and FLATTEN will never recursively
descend. The workings of FLATTENNODE on ρ are de-
scribed next. The formula SD1 in node V1 needs to be con-
verted to DNF, and at the first invocation of FLATTENN-
ODE we get P = {¬h1 ∧ x, z}. The function is invoked

Algorithm 1 Hierarchical model compilation.

procedure FLATTEN(H, N, t, r)

inputs: H = 〈V, ρ, E〉, hierarchy
N , the current node, N ∈ V , initially ρ
t, integer, maximal depth
r, integer, current depth, initially 1

local variables: SD, the CNF in N

function FLATTENNODE(H, K) returns a DNF

inputs: H = 〈V, ρ, E〉, hierarchy
K , the current node, K ∈ V

local variables: SD1, the CNF in K
P, Q, R, term sets, initially ∅

P ← COMPILEDNF(SD1)
for all {e ∈ E : e = V → L} do

5: Q← FLATTENNODE(H, L)
for all {p ∈ P, q ∈ Q : p ∧ q 6|=⊥} do

R← R ∪ {p ∧ q}
end for

end for
10: return R

end function

if t = r then
SD← FLATTENNODE(H, N)
E ← E \ {e ∈ E : e = V →M}

15: else
SD← COMPILEDNF(SD1)

end if
for all {e ∈ E : e = V →M} do

FLATTEN(H, M, t, r + 1)
20: end for

end procedure

recursively for e1 and as in the second node SD2 is al-
ready in DNF the result is: Q = {¬h2 ∧ ¬x}. Multi-
plying P and Q results in a set with one consistent term:
R = {¬h2 ∧¬x∧ z}. At the second recursive call of FLAT-
TENNODE we convert SD3 = (¬h3 ∨ z) ∧ y to DNF which
results in Q = {¬h3 ∧ y, y ∧ z}. Multiplying the partial
result R by P for the second time results in the final set of
terms R = {¬h2 ∧ ¬h3 ∧ ¬x ∧ y ∧ z,¬h2 ∧ ¬x ∧ y ∧ z}.

The first and the second multiplications in the above ex-
ample are performed in two steps each. The whole transfor-
mation takes four steps, which is obviously an improvement
over a brute-force enumeration of all possible instantiations
over the variables h1, h2, h3, x, y, and z in the flat CNF for-
mula produced from the hierarchy H .

Complexity of the Hierarchical DNF Compilation

Next we discuss the complexity of the compilation step in re-
lation to two other well-known compilation forms – DNNF
(Darwiche 1998) and OBDD (Brace, Rudell, & Bryant
1990). Transforming CNF to DNF is worst-time exponen-
tial of the number of variables, hence both the time and
space complexity of the compilation phase are O(2|SDmax|),
where |SDmax| is the node with a knowledge-base having
the highest number of variables. A full-flattening (t = 1)
is equivalent to the worst-case in the traditional compila-

tion approaches, hence the time speed-up in the compilation
phase can be exponential to |SD|/|SDmax|, where |SD| is the
total number of variables in H .

The DNNF and OBDD compilations can, in the worst-
case, produce a representation with the number of nodes ex-
ponential of the input size. The major advantage of these
strict-compilation approaches is that they support queries
(e.g., minimal cardinality, model-counting, etc.) in time
polynomial to the compiled size, allowing for accurate time-
bounds on the online reasoning phase.

Hierarchical DNF is a restricted form of NNF, i.e., it is
a conjunction of disjunction of conjunctions. For these hi-
erarchical DNF formulae, decomposability (as defined for
DNNF) does not hold, and the performance of the algo-
rithms described here will depend on the number of shared
literals between any two hierarchical DNF nodes. It can be
shown that hierarchical DNF is more succinct than DNNF,
however we will omit a formal proof for a lack of space.
This succinctness results in that hierarchical DNF does not
support the queries which DNNF supports in polynomial
time, hence not qualifying as a strict compilation language.

To analyze the effect of the compilation depth t on the
compilation complexity we assume that each node in the
original hierarchy H is transformed to DNF in constant time
(e.g., by an oracle). In this case, the partial flattening process
will increase the size of the nodes exponentially to the num-
ber of nodes, counted from the nodes having no incoming
edges, that is the worst-case space complexity is O(2d−t).
In practice, for non-tightly connected models t can assume
only values close to the original depth d. For more tightly
connected models (e.g., strong-fault models), pruning can
be done to a smaller depth, increasing the node-size until a
predetermined bound on the number of terms M per node
has been reached.

A* Search in a Hierarchical DNF

Next, we proceed with the run-time part based on A*. We
assume that components failures are independent and use
the a priori probability of a fault term to guide a heuristic
search for the most likely diagnosis. We assign the same
small probability to all the components (de Kleer 1990) as
the reasoning technique is not probability driven and it is
possible to use other heuristics with similar results (e.g., the
cardinality of a fault-mode).

The heuristic function for getting to a node containing a
term σ in a tree constructed from a hierarchy with an equiv-
alent DNF, φ, is f(σ) = P1(h1)P2(h2) . . . Pn(hn), where
h1, h2, . . . , hn are all the health variables in φ. In this case
the probability of hi being true if hi is in σ is P (hi) and
Pi(hi) = 1 − P (hi) if ¬hi is in σ. If neither hi nor ¬hi

are present in σ, Pi(hi) = max(P (hi), 1−P (hi)). The A*
algorithm shown below is guided by f(σ) when traversing
the hierarchy.

In its main loop, Algorithm 2 selects such a term c from
the hierarchical node that the heuristic estimate f(c) is max-
imized. When a consistent conjunction of terms is chosen
from all the nodes in the hierarchy, OUTPUTDIAGNOSIS is
invoked to send the result to the user.

Algorithm 2 A* search in a hierarchical DNF dictionary.

procedure HIERARCHICALDIAGNOSE(H)

inputs: H , hierarchical node
local variables: Q, priority queue

s, c, terms

PUSH(Q, INITIALSTATE(H))
while (c←POP(Q)) 6= ∅ do

ENQUEUESIBLINGS(Q, c)
5: if DIAGNOSIS(c) then

OUTPUTDIAGNOSIS(c)
else

if (s←NEXTBESTSTATE(H, c)) 6|=⊥ then
PUSH(Q, s)

10: end if
end if

end while
end procedure

The auxiliary functions PUSH and POP perform the respec-
tive priority queue manipulation on Q (POP returns ∅ if the
queue is empty). The initial state in the search tree, re-
turned by INITIALSTATE, is the empty term. The selection
of the next candidate states to be added to the search queue
is done by the functions NEXTBESTSTATE and ENQUEUE-
SIBLINGS. The former chooses the child state of the current
state c and uses this term s from it, which again maximizes
the utility function f(s). To allow for a complete search,
ENQUEUESIBLINGS is used to enqueue the siblings of the
current node and all its ancestors. Only consistent terms are
added to the queue, and OUTPUTDIAGNOSIS should keep
track and prevent duplicate diagnoses. A practical approach
is to keep the diagnoses in a trie (Forbus & de Kleer 1993).

Let us illustrate the workings of Algorithm 2 on the hierar-
chical problem HP = 〈H, OBS〉, with a hierarchy H consist-
ing of three nodes V1, V2, and V3, two edges e1 = {V1, V2},
e2 = {V1, V3} and a root node V1. The DNF expressions in
V1, V2, and V3 are φ1 = {}, φ2 = (h1 ∧¬a∧ b)∨ (h1 ∧ a∧
¬b)∨(¬h1) and φ3 = (h2∧¬b∧c)∨(h2∧b∧¬c)∨(¬h2),
respectively. Let OBS = c and Pi(hi) = 0.95 for i = 1, 2.

After instantiating the terms in V1, V2, and V3 with OBS
and removing the inconsistent terms we get the search tree
in Figure 2.

¬h2

s1

s2

s4

s5

s6

s7

¬h1

h1 ∧ ¬a ∧ b

h2 ∧ ¬b ∧ c h1 ∧ a ∧ ¬b

h1 ∧ ¬a ∧ b

h1 ∧ a ∧ ¬b

s9

s8

s3 ¬h1

{}

Figure 2: The search tree constructed by Algorithm 2 applied on
an example hierarchical diagnosis problem.

Initially, the state s1 is pushed on the queue. Its best child is
s2 as it has higher probability than s3: f(s2) = 0.95, while
f(s3) = 0.05. When s2 is popped next, its first child s4 is
skipped as it leads to inconsistency (in the b literal) and s5

is pushed on the Q. Next s5 is retrieved (it is the only state
on the queue) and it is a leaf node, hence its health variables
form a diagnosis. After showing the diagnosis, Algorithm 2
pushes the best consistent siblings of all the predecessors of
s5 on the queue. These are s6 and s3. Now s3 has the the
highest probability in the queue, hence it is popped and its
best child s7 is pushed. In the next step s7 is popped, which
is a diagnosis. The process continues until, finally, we pop
s9 from the queue; a state which has the lowest probability
diagnosis: D = {¬h1,¬h2}.

Typically, the performance of Algorithm 2 is not sensi-
tive to the choice of the a-priori health probabilities for the
components. Algorithm 2 works faster for well-decomposed
trees (i.e., having a small number of shared variables). In
practice, however, this is not always the case and subsystems
sharing more variables appear at the low levels of the hierar-
chy, constraining the number of solutions. Such subsystems
are likely to be flattened by the pre-processing part of our
hybrid algorithm thus leading to a fast overall diagnosis for
systems well decomposed at the top level and constrained at
the nodes, appearing close to the leaves of the tree.

Algorithm 2 differs from the traditional A* by the way it
constructs its search tree. The depth of the search tree equals
the number of subsystems and the order in which they are
traversed depends on the hierarchy of the system (i.e., terms
of top-level systems show near the root of the search-tree).

Experimental Results

We have derived a diagnosis benchmark from the ISCAS-85
set of combinatorial circuits (Brglez & Fujiwara 1985). Un-
fortunately, the hierarchy in the original ISCAS-85 circuits
has been flattened-out and they have been distributed in a
simple netlist format. As the original high-level design is
a good starting point for model partitioning, we have used
the reverse engineered ISCAS-85 circuits (Hansen, Yalcin,
& Hayes 1999) instead of the original flat representation.
The flattened and the hierarchical ISCAS-85 circuits are, of
course, logically equivalent.

Name Gates |SD| |∆| |OBS| |V | |E| |T |

74182 19 47 75 14 9 19 20
74283 40 89 130 14 16 43 44
74L85 41 93 134 14 12 39 46
74181 62 138 216 22 18 66 67

c432 146 328 486 43 13 151 152
c499 202 445 714 73 9 204 205
c880 383 826 1 112 86 10 383 384
c1355 514 1 069 1 546 73 10 208 621
c1908 252 541 911 58 25 237 268
c2670 983 2 153 2 856 226 47 314 1 174
c3540 1 297 2 685 3 861 72 59 382 1 550
c5315 2 202 4 796 6 983 295 66 294 2 738
c6288 2 416 4 864 7 216 64 4 2 416 2 417
c7552 3 024 6 390 9 085 325 71 359 3 806

Table 1: Basic characteristics of the weak-fault diagnosis models
based on the 74XXX and ISCAS-85 combinatorial circuits.

The basic characteristics of the high-level ISCAS-85 mod-
els are shown in Table 1. We have counted the number of
variables |SD| and the number of clauses in the CNF |∆|.

The number of observable variables is denoted as |OBS|.
Next to the CNF characteristics are shown the fundamental
DNF/H metrics |V | and |E| measuring the number of nodes
and edges respectively.

The high-level ISCAS-85 circuits are available in the Ver-
ilog HDL format and as our algorithms are implemented in
the LYDIA2 framework, we have implemented a Verilog to
LYDIA translator. In addition to the original ISCAS-85 mod-
els we have added four circuits from the 74X family. The
latter are smaller than the ISCAS-85 models and provide ad-
ditional reference points for the fault-diagnosis experiments
allowing some exhaustive searches.

The ISCAS-85 specification does not provide for a fault-
modeling, hence we use our own standard logic compo-
nent libraries allowing every gate-level component to fail.
Throughout this paper we have used weak-fault models of
the components.

The original high-level combinatorial circuits provide a
top-level module whose only function is to re-assign all the
input and output pins. As this pin-assignment does not
change the solutions of the circuit and it is trivial to extend
the algorithms for explicitly handling such assignment lists
by moving them away in the beginning and renaming the
variables in the solutions according to the stored assignment
list, we have removed these top-level modules from all the
circuits.

All the experiments described in this paper are performed
on a 1.86 GHz Pentium M CPU.

Compile-Time Flattening Trade-Offs

The effect of the pre-processing step (Algorithm 1) on the
representation size and the time for compilation is shown
in Table 2. The three representations on which we perform
diagnostic search are constructed as follows. The DNF/H
models are the original high-level ISCAS-85 models con-
verted to hierarchical DNF (each leaf-node pushed down to
the same depth d). By partially flattening to a depth d−1 we
obtain DNF/P1 and by flattening to d−2 we obtain DNF/P2.

In Table 2 we can see the compilation times for convert-
ing hierarchical CNF to hierarchical DNF and the time nec-
essary for partial flattening. This time is denoted as Tc. The
sum of the terms in each of the nodes of the hierarchical
DNF is denoted as |φt|. Note, that for DNF/H we don’t have
a partial flattening step, hence the compilation time is only
the time for converting the hierarchical CNF to hierarchi-
cal DNF. Finally, Td measures the time for finding a leading
single-fault diagnosis using hierarchical A*.

By partial flattening to DNF/P1 we gain speedup by a fac-
tor varying from 2 to 5.6 and with the deeper flattening to
DNF/P2 the speed improvement varies from 2.9 to 12.3 (cf.
Table 2). For this improvement in speed we pay the price
of increasing the representation size in comparison to the
original DNF/H. This increase in size in the DNF/P1 compi-
lations is 1.7 – 2.6 times and in the DNF/P2 representation
is a factor of 5.9 – 49.7.

2The LYDIA package for model-based fault diagnosis as well
as the ISCAS-85 benchmark circuits can be downloaded from
http://www.fdir.org/lydia/.

DNF/H DNF/P1 DNF/P2

Tc [ms] |φt| Td [ms] Tc [ms] |φt| Td [ms] Tc [ms] |φt| Td [ms]

74182 0.43 141 0.56 4.75 323 0.28 662.51 2 431 0.15
74283 0.94 216 1.41 4.74 442 0.4 244.81 3 332 0.3
74L85 0.63 257 1.28 4.73 554 0.65 688.71 6 678 0.45
74181 0.75 364 17.97 8.37 803 3.43 1 391.56 8 326 1.46

c432 1.13 670 61.27 17.16 1 396 10.93 1 484.81 10 579 10
c499 1.31 1 079 12.22 41.92 2 828 3.55 69 673.39 53 653 3.84
c1908 2.31 1 407 20.61 59.44 3 225 7.17 28 881.22 28 544 4.75
c880 1.4 1 826 38.44 39.49 4 055 12.43 2 282.52 29 305 4.51
c1355 1.26 2 327 102.34 74.03 4 167 40.04 68 565.88 43 677 16.36
c2670 3.84 5 027 981.73 101.99 9 572 333.2 3 425.12 36 817 111.47
c3540 4.21 7 021 871.21 153.16 14 070 413.96 7 272.73 82 808 187.32
c5315 54.48 12 534 23 172.46 268.11 22 656 6 786.24 6 129.04 73 576 2 796.49
c6288 4.72 10 145 1 453.99 210.85 17 301 450.89 4 067.29 74 014 123.38
c7552 10.95 16 569 4 264.19 427.74 33 758 1 533.95 93 107.63 213 382 746.95

Table 2: Compilation time, resulting H-DNF size and first single fault diagnosis search time for the benchmark suite models.

The speed of the run-time search is determined by the
depth and the quality of partial flattening, which depends
on the original hierarchy. The DNF/H representations of
the ISCAS-85 circuits, however, are obtained by sequential
splitting of large nodes to prevent explosion in the size of the
partially flattened DNF. This naı̈ve partitioning is the reason
for the mostly linear speedup in Td.

While model partitioning is a topic on its own, even
these preliminary results suggest the existence of an optimal
space/time trade-off which we intend to exploit in subse-
quent research. Experiments with hand-prepared hierarchies
(Alexander Feldman & Bos 2005) show speedup growing
faster than the model size and in the range of 102 − 105.

State of the art compilation techniques like DNNF (Dar-
wiche 2004) report experimental results on model-counting
for ISCAS-85. Using the DNNF compiler discussed there
we could not compile circuits bigger than c1908 in time
less than 15 minutes. The circuits we have used, however,
are weak-fault models of ISCAS-85 which makes them big-
ger than the original ones. In addition to that our approach
does not support queries for model-counting which makes
the comparison of the two techniques difficult.

Diagnostic Performance Related to the Model Size

We have compared the performance of the traditional A*
and hierarchical A* diagnostic engines as a function of the
model size by using the circuits in Table 1. Figure 3 shows
the performance of the two methods with random observa-
tions consistent with zero- and single-fault health. These
observations were chosen arbitrarily and do not guarantee
worst-case or average performance of the run-time part of
the algorithm but are indicative for its potential.

The speedup of the hierarchical approach for nominal di-
agnoses (Figure 3) is in the range of 0.6 – 7.9. Note, that
checking for nominal behavior with the traditional A* algo-
rithm is very efficient since the consistency check is invoked
only once. However, in these experiments, due to the fact
that all inputs and outputs are assigned, the DPLL check fin-
ishes in polynomial time by doing unit-propagation only. As
a result, our experimental results are conservative in terms
of the hierarchical speedup (the latter would increase with

1

10

100

1000

10000

100000

0 500 1000 1500 2000 2500 3000

t
[m

s]

Number of Gates

HA* (nominal)
HA* (single fault)

A* (nominal)
A* (single fault)

Figure 3: Time for finding a leading diagnosis in the ISCAS-85
circuits by the A* and the hierarchical A* diagnostic engines.

shorter observations). The gain in the hierarchical algorithm
comes from the shallower search tree which, in the former
case, has a depth equal to the number of nodes |T | in the
hierarchical representation (cf. Table 1).

The advantage of the hierarchical algorithm for finding a
leading single-fault diagnosis is bigger and varies from 2.8
for c1908 to 170.1 for 74181, being 43.9 and 43.7 for the
two biggest models (c6288 and c7552 respectively). In all
the cases, the traditional A* algorithm finds a leading fault
after a relatively small number of consistency checks (the
biggest number of DPLL calls is 41 for the 74181 circuit
but is typically between 2 and 4 for the rest of them). The
hierarchical technique shows better scalability as the diag-
nosis time decreases by, e.g., a factor of 1.5 between c2670
and c3540 (while the number of gates increases by a factor
of 1.3). Contrary to that behavior, the flat method shows
increase in the amount of time for computing diagnosis.

Performance of Multiple-Fault Diagnosis

From the above it is to be expected that the speedup in-
creases with the number of faults diagnosed. We define the
cardinality of a fault |D| to be the number of elements in a
diagnosis D. The leading or minimal fault cardinality (de-
noted as MC) is the cardinality of the fault with the highest

probability estimator P as computed in Algorithm 2.
For the next experiment we have chosen the 74283 cir-

cuit and 6 possible sets of observations (consistent with
MC = 0, 1, . . . 5). The highest MC is the highest possible
cardinality of a minimal diagnosis for this model as it con-
tains 5 outputs only and lacks redundancy. Finding those
observations that are exclusive for maximal MC is computa-
tionally demanding and we have succeeded to do this only
for the three smallest circuits. Next, we compare the perfor-
mance of the “traditional” and hierarchical A* implementa-
tions in finding these leading diagnoses of variable MC. The
result is shown in Figure 4.

0.1

1

10

100

1000

10000

100000

1e+06

0 1 2 3 4 5

t
[m

s]

Leading Fault Cardinality

H A*
A*

Figure 4: Time for finding a leading-diagnosis of different mini-
mal cardinality with the A* and hierarchical A* algorithms.

The time for finding a multiple-fault diagnosis with the tra-
ditional A* and the a-priori health probability heuristics in-
creases exponentially with the cardinality of the diagnosis,
which is visible in the performance graph. The worst-case
complexity of the hierarchical A* algorithm is the same, but
with certain hierarchies, multiple faults can reside in the
same partition leading to faster detection. This results in
speedups ranging from 1.4 to 173.3 in our 74283 experi-
ment. To detect a minimal fault of cardinality 5, the “flat”
A* algorithm takes 786 366 times the time for determining
a nominal health. In the hierarchical version, the factor is
6 276, which demonstrates significantly better scalability.

Conclusion

We have described a two-step hierarchical method for com-
puting diagnoses. The first preprocessing step, transforms a
hierarchical CNF model of the system to hierarchical DNF
of adjustable depth. In the second step, this hierarchical
DNF is input to a hierarchical A* search for states consistent
with the observation. The heuristic used for the hierarchical
A* search is the a-priori probability of a state.

The improved performance of the hierarchical approach
over the traditional CNF to DNF conversion and non-
hierarchical A* are empirically demonstrated. Experiments,
including diagnosis of models based on the ISCAS-85
benchmarks demonstrate a speedup of 2 - 270, typically
around 90 for finding a leading single-fault diagnosis. Fur-
thermore, the hierarchical approach scales better in finding
multiple-faults as we have shown a speedup of 170 in finding
a leading diagnosis of cardinality 5.

Future work includes three main directions. First, we aim
at generalizing our technique for allowing a wider range of
reasoning queries and comparing the results with state of
the art compilation techniques like DNNF. Second, extend-
ing our algorithms with state of the art conflict-learning and
probabilistic driven reasoning would give us better insight
into the merits of the hierarchical approach. Finally, we are
interested in optimal model partitioning, and extending the
pre-processing step to work on a wider variety of hierarchi-
cal representations. In particular, we aim at determining per-
formance bounds based on the connectivity of the input hi-
erarchy for determining optimal hierarchical representation.

Acknowledgments
We extend our gratitude to the anonymous reviewers for
their insightful feedback.

References
Alexander Feldman, A. v. G., and Bos, A. 2005. A hybrid
approach to hierarchical fault diagnosis. In Proc. DX’05,
101–106.

Brace, K.; Rudell, R.; and Bryant, R. 1990. Efficient im-
plementation of a bdd package. In Proc. DAC’90, 40–45.

Brglez, F., and Fujiwara, H. 1985. A neutral netlist of 10
combinational benchmark circuits and a target translator in
fortran. In Proc. ISCAS’85, 695–698.

Darwiche, A. 1998. Model-based diagnosis using struc-
tured system descriptions. JAIR 8:165–222.

Darwiche, A. 2004. New advances in compiling CNF into
DNNF. In Proc. ECAI’04, 328–332.

Davis, M., and Putnam, H. 1960. A computing procedure
for quantification theory. JACM 7(3):201–215.

de Kleer, J., and Williams, B. 1987. Diagnosing multiple
faults. JAI 32(1):97–130.

de Kleer, J.; Mackworth, A.; and Reiter, R. 1992. Char-
acterizing diagnoses and systems. Artificial Intelligence
56(2–3):197–222.

de Kleer, J. 1990. Using crude probability estimates to
guide diagnosis. AI 45(3):381–291.

Fattah, Y. E., and Dechter, R. 1995. Diagnosing tree-
decomposable circuits. In IJCAI’95, 1742–1749.

Forbus, K., and de Kleer, J. 1993. Building Problem
Solvers. MIT Press.

Hansen, M.; Yalcin, H.; and Hayes, J. 1999. Unveiling the
ISCAS-85 benchmarks: A case study in reverse engineer-
ing. IEEE Design & Test 16(3):72–80.

Mozetič, I. 1991. Hierarchical model-based diagnosis.
JMMS 35(3):329–362.

Provan, G. 2001. Hierarchical model-based diagnosis. In
Proc. DX’01.

Stumptner, M., and Wotawa, F. 2003. Coupling CSP
decomposition methods and diagnosis algorithms for tree
structured systems. In Proc. DX’03.

Vatan, F. 2002. The complexity of the diagnosis problem.
Technical Report NPO-30315, Jet Propulsion Laboratory,
California Institute of Technology.

Williams, B., and Ragno, R. 2004. Conflict-directed A*
and its role in model-based embedded systems. JDAM.

