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Abstract—We report on an experiment of using Model-Based
Diagnosis (MBD) for advanced health monitoring of the

hard-docking system of the International Berthing and Dock-

ing Mechanism (IBDM). The results of this experiment illus-

trate our approach in solving two major problems of MBD:

modeling an artifact of non-trivial size and managing the rep-
resentation complexity for finding a root cause of failure. The

qualitative model of the hard-docking system has 425 vari-

ables (161 components) and 1328 clauses wherein the diag-

nostic reasoner is capable of determining a quadruple failure

in less than 6 s on a midrange PC. Our conclusion is that the
qualitative modeling language LYDIA and the automated rea-

soning framework UPTIME are capable of delivering of sound

and accurate diagnosis imposing only a moderate computa-

tional burden, making this technology attractive for future

health monitoring applications.
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1. INTRODUCTION

Motivated by the success of NASA in achieving autonomy by

using Model-Based Reasoning (MBR) and automated plan-

ning in the inter-planetary probe Deep Space 1 [16], we have

studied the application of Model-Based Diagnosis (MBD)
techniques for achieving accurate and fast determination of

root-cause of failure to a wider-range of critical and depen-

dent systems. This paper reports on an experiment of us-

ing MBR for advanced health monitoring of the hard-docking

system of the International Berthing and Docking Mechanism
(IBDM).
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In our results we restate the conclusions of related research
[16], [19], [25] that MBD delivers a robust and accurate de-

termination of root-cause of failure and the technique is bet-

ter scalable in comparison to traditional procedure-based fault

monitoring. The major disadvantage of the traditional tech-

niques is the additional fault modeling effort that is required
to express the fault behavior of the system. It requires that

a human manually simulates the fault propagation: a labor-

intensive and error-prone process. Furthermore this process

of describing the faulty-behavior of each component of a sys-

tem needs to be repeated each time the design changes, where
in the model-based approach, the modeling effort can be re-

stricted to the structural and nominal behavior of the system;

a process that can be often automated for a substantial part.

MBD, on the other hand, does not come without its difficul-
ties and together with the description of our approach we pro-

pose a number of techniques to deal with these challenges.

We consider two main aspects of using MBD for the health-

monitoring of IBDM - modeling and computational [24]. In
the former we describe the process of building a model from

the system design specification. In the computational part, we

introduce a number of techniques for controlling the combi-

natorial explosion when computing diagnosis.

The IBDM hard-docking system is a complex device com-

prising of tens of interconnected electro-mechanical compo-

nents. Modeling and reasoning about a device of such size

and character is non-trivial and requires a number of lan-

guage features for fault modeling and the use of advanced
algorithms, which we have implemented as a part of the UP-

TIME MBR integration platform.

In the modeling phase of the hard-docking system we have

used a specialized language for qualitative modeling, named
LYDIA (Language for sYstem DIAgnosis) [17]. In addition

to demonstrating the language use, we motivate the model-

ing approximations and describe the process of deriving and

refining the model. We pay special attention to the temporal

aspects of diagnosis.
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On our way of solving the big computational burden of

MBD we employ a number of state-of-the art techniques like

model compilation, multi-valued reasoning, conflict-directed
A* search, exploitation of structure (hierarchy) and others.

The IBDM model, due to its highly structured nature, proves

to be very amenable to these techniques, delivering fast diag-

nosis time.

Almost all approaches towards the problem of fault detec-

tion of technical systems check whether the observed sensor

readings agree with some predefined nominal behavior. For

simple systems, nominal behavior can often be described in

a simple way, by defining static upper and lower limit val-
ues for key system variables. For complex systems, however,

defining static limit values in this way quickly fails short as

normative behavior will be state dependent. The fault de-

tection approaches for these complex systems need a system

tracking or a state estimation process in order to derive the
appropriate limit values to define nominal behavior. Typi-

cal approaches for system tracking or state estimation include

simulation (e.g., discrete simulation using state transition for-

malisms [23]), filters (e.g., Kalman filters [1]), and rule-based

systems [18].

Traditional techniques for fault diagnosis often use a form

of pattern matching to derive the root cause of a failure. A

typical example is a fault propagation graph describing how

fault behavior propagates through the system. This graph can
then be applied to derive the cause of a failure by matching

the observed systems to the fault behavior as described by the

graph.

One of the most influential theoretical sources in Model-

Based Diagnosis are [9] and [22]. An early implementation

of these fundamental results is the General Diagnostic Engine

(GDE), using a sound but incomplete consistency checking

(Logic-Based Truth Maintenance System). Both LYDIA and
UPTIME use DPLL-based SAT solvers [6] as basic inference

engines. An important difference is that UPTIME provides a

multi-valued reasoning mechanism [12], thus obsoleting the

need of costly encodings [13]. Such kind of multi-valued rea-

soning can be seen a structure-exploitation for faster reason-
ing. This is complementary to conflict-driven backjumping

and learning [26], a feature implemented in UPTIME as well.

Another approach for solving the high-computational cost of

MBR is to use compilation. Compilation techniques trade
inexpensive off-line preprocessing for faster reasoning at run-

time. Strict compilation techniques [3], [4] achieve online

reasoning time polynomial of the size of the compiled model

representation. The biggest problem of the strict compilation

approaches is that size of a compiled model can be (in the
worst-case) exponential of the original representation, thus

imposing limits on the applicability of these techniques.

The remainder of this paper is organized as following. In the

next chapter we introduce the IBDM hard-docking system

and the language for qualitative modeling LYDIA. In Sec-

tion 3 we discuss some algorithms for automated reasoning.

An extensive set of experiments is shown in Section 4 and
finally, in Section 5, we summarize our research and outline

directions for future work.

2. MODELING OF THE IBDM
HARD-DOCKING SYSTEM

This section discusses the modeling aspects of the IBDM

hard-docking system. We start with a description of the sys-

tem being modeled. Afterwards, we illustrate all the steps

necessary for creating a qualitative fault-model. With this

running example we introduce the LYDIA language. In prac-
tice we have followed a mixed top-down and bottom-up ap-

proach in which we have firstly defined the system structure

at top-level, then modeled each component separately and fi-

nally validated the overall system.

Overview of the IBDM Hard-Docking System

In reality the IBDM Hard-Docking System (Figure 1) is a
fairly complex electro-mechanical device which establishes a

rigid connection between the chaser and target vehicles once

the soft-docking phase has been completed [11]. It is of in-

terest for automated health-monitoring due to the complexity

of the docking operation, the risk of critical or non-critical
failures and the need for fast troubleshooting and decision

making in case of a failure. The design of the hard-docking

system is discussed briefly in the text below.

Figure 1. IBDM hard-docking system

The IBDM hard-docking system is being designed for robust-

ness, hence the redundancy in its mechanisms. At the struc-

tural part we distinguish the following major subsystems:

EMA: The primary Electro-Mechanical Actuator (EMA) unit
drives the primary ring gear. In its turn the primary ring gear

drives the input of the twelve primary gear-boxes. Similarly,

the secondary EMA unit drives the secondary ring gear that
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drives the inputs of the twelve secondary gear-boxes.

Gear-Box: The gear-box (dual right angle gear head) has

both the primary and secondary gear train built in. The box
is attached directly to the latch frame. The gear-box is driven

by the ring gears, using a separate pinion for each drive, and

interfaces with the primary and secondary crank of the latch

assembly by means of a spline.

Latch Assembly: The hard docking system consist of the tun-
nel that makes the pressurized connection between the two

spacecrafts. The tunnel itself is not a part of the model.

Twelve structural latches are mounted on the on the inside

of the tunnel. The counter part of each latch assembly is a

latch tab.
Latch Tab: The latch tab provides the interface for the latch

linkage on the mating tunnel. The latch tab assembly is de-

signed to act as a load limiter that will keep the forces in the

latch within a defined range (due to manufacturing and as-

sembly tolerances). The load limiter is built as a preloaded
stack of Belleville springs, placed in series with the latch tab.

This load limiter is equipped with a load sensing bolt to mon-

itor the preload while the vehicles are mated in orbit.

The qualitative model of the hard-docking system is a set of

constraints over some observable, health, and internal vari-

ables (a more formal definition of a health-model follows in

Section 3). We group these constraints, depending on the dis-

crete control state in which the system is. The values for the
control state are human-derived; a small number to prevent

computational blow-up when applying automated reasoning

and enough to extract useful diagnostic information during

the whole operational lifetime of the hard-docking system.

A state transition diagram illustrating the possible transitions
between the states is shown in Figure 2.

Pyro Unlatched

Primary
Latched

Primary
Unlatching

Secondary
Unlatching

Secondary
Unlatched

Primary
Latching

Primary
Unlatched

Figure 2. IBDM hard-docking system state transition dia-

gram

There are seven phases in which we describe the behavior of

the hard-docking system:

Primary Latching: The mechanical components are moving
– the primary EMA is rotating the drive gear which moves

the primary gear-boxes, which in their turn rotate the pri-

mary cranks of the latch assemblies. The rollers are engaging

the corresponding latch tabs and the load on the load-sensing

bolts is increasing. The state of the micro-switches in the

latch-assemblies is irrelevant to the health of the system (i.e.
they can be either open or closed depending on the progress

of the latching).

Primary Latched: The hard-docking system can be put in a

latched state by the primary mechanism only. The rollers

engage the latch tabs. The load in the latch tabs should be
constant in time and above a landmark-value. In the nomi-

nal (all-healthy) state, the micro-switches should reflect the

closed state of the primary latch assembly.

Primary Unlatching: The opposite of the primary latching

phase in which the rollers are retracting and the load in the
latch tab is decreasing. The state of the micro-switches is,

again, not relevant for the health of the system.

Secondary Unlatching: A back-up unlatching has been initi-

ated and this should be reflected in the load of the latch tabs.

A healthy secondary unlatching is indicated by a decreasing
load in the load-sensing bolt.

Pyro Unlatch: The pyro unlatching system is provided for

rapid-decoupling of the docked vessels in case of a catas-

trophic failure. Due to the nature of this subsystem (manually

activated and being active for a very small time interval) we
do not include it in the model.

Primary Unlatched: If the hard-docking system is in this

state, we indicate the configuration in which the latch assem-

bly was unlatched by the primary mechanisms.

Secondary Unlatched: The hard-docking system is in this
state after a successful unlatching performed by the sec-

ondary mechanism (secondary EMA, secondary gear-box and

secondary latch assembly).

Next we continue with the steps necessary for creating the

model of the IBDM hard-docking system.

Modeling of the IBDM Hard-Docking System in LYDIA

A LYDIA model is a hypergraph describing the system struc-

ture, its subsystems and components. Each component de-

fines a set of variables in the finite-integer domain. In LYDIA

these variables can assume one or more symbol values (the

notion of symbol is similar to the one in LISP). The reason-

ers, of course, work with integer sets while the symbols are

for convenience. LYDIA is a declarative language with syntax

similar to Verilog and an extensive typing system.

For brevity, we will not discuss the model of the IBDM

hard-docking system in its entirety, but only these parts of

it which fully illustrate the modeling process. We start with

defining the domains of our variables. Next we model the
top-level system, underlining some important modeling con-

structs (e.g., composition and constraints). Finally for this

section, we discuss a single component (latch tab) with non-

trivial temporal model. The models of the remaining compo-

nents are built in similar way.

Defining Domain Types of the Model Variables— There are

two atomic types in LYDIA: Boolean and an enumeration
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(the former is for convenience only). In addition to that, LY-

DIA supports a feature-rich system of user-defined types like

structures, arrays, aliases, etc. All these complex data-types
are rewritten to atomic variables of enumerative type in the

model compilation phase. We start the model of the hard-

docking system by defining some user-types (cf. Figure 3).

type range = enum { below, inside, above };
type phase = enum
{

primaryLatching,
primaryUnlatching,
secondaryUnlatching,
pyroUnlatch,
primaryLatched,
primaryUnlatched,
secondaryUnlatched 10

};
type roller = enum {engaging, engaged, disengaging, disengaged };
type systemControlState = enum
{

healthy,
spuriousLatched,
spuriousUnlatched,
inadvertentAction

};

Figure 3. User-defined types of the model of the IBDM

hard-docking system.

Note the use of the enumeration type phase to denote the con-

trol state in which the hard-docking system functions. In LY-

DIA and UPTIME, there is no difference between health and

nominal states. In place, an extensive mechanism for attribut-

ing variables has been developed, which we have used for as-
signing a priori probabilities of a variable assuming a given

value. This probability will be used to solve an constraint

optimization problem, i.e., finding such a health assignment

which maximizes a utility function. The mechanism is then

used for ordering the health states1.

Top-Level System— Figure 4 and Figure 5 show part of the

top-level node of the IBDM hard-docking system. The range

enumeration is used in a fashion similar to [25] for denoting

landmark intervals. The state of the hard-docking system (cf.
Figure 2) is one of the values in the phase enumeration. Fi-

nally, we have four possible states for the roller which is a

part of the latch assembly.

The “switch” predicate of Figure 4 splits the constraints de-
pending on the control phase, the latter observed in the dock-

ingPhase variable. Note that only the primary mechanism can

be used for latching. LYDIA can use existential and universal

quantifiers over the elements of arrays. We use this feature

to implement constraints like the ones in Figure 4. The sec-
ond exists construct, for example, specifies that an increased

amount of force exercised by the ring gear implies any of the

twelve gear boxes or latch tabs jammed.

1In some cases the ordering coincides with an ordering according the fault-
cardinality of a state [7].

system HardDockingSystem()
{

phase realDockingPhase, controlDockingPhase, dockingPhase;

if (controlDockingPhase != dockingPhase) {

controlState = systemControlState.inadvertentAction;
}

systemControlState controlState;
10

if (systemControlState.healthy = controlState) {

realDockingPhase = dockingPhase;
}

if (systemControlState.spuriousLatched = controlState) {

(realDockingPhase = phase.primaryUnlatched) or
(realDockingPhase = phase.secondaryUnlatched);

}

if (systemControlState.spuriousUnlatched = controlState) {

(realDockingPhase = phase.primaryLatched);
} 20

switch (realDockingPhase) {

phase.primaryLatching −>

{

primaryEMARegime = EMARegime.latching;
latchTabPhase = tabPhase.latching;

}

phase.primaryUnlatching −>

{

primaryEMARegime = EMARegime.unlatching; 30

.

.

.
}

tabPhase latchTabPhase;

system LatchTab latchTab[12](latchTabPhase);

EMARegime primaryEMARegime;
EMARegime secondaryEMARegime;

40

EMAMotorSelection primaryEMAMotorSelector;
EMAMotorSelection secondaryEMAMotorSelector;
system EMA primaryEMA(primaryEMAMotorSelector,

primaryEMARegime,
primaryRingGear);

system EMA secondaryEMA(secondaryEMAMotorSelector,
secondaryEMARegime,
secondaryRingGear);

(continues in Figure 5)

Figure 4. A LYDIA model of the top level hard-docking

system.

In Figure 4 the reader can observe two major LYDIA con-
structs – variable and subsystem declarations and variable

constraints. For example, two variables of type EMARegime

are used to denote the modes of the primary and secondary

EMA components. The part of the model shown in Figure 4

contains the declaration of the twelve latch tab components
(the model of the latch tab we will discuss in details below).

The other type of construct is a constraint. In Figure 4 we

see mainly implications (the “if” and “switch” predicates are

translated to multi-valued propositional implications as we
will see in more details in Section 3). Note, that unlike in,

e.g. Prolog, LYDIA does not impose tractability on the mod-

eling language. The price of this is exponential complexity in
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(continued from Figure 4)

ringGear primaryRingGear, secondaryRingGear;

system GearBox gearBox[12];
system StructuralLatchAssembly structuralLatchAssembly[12];

crank latchAssemblyPrimaryCrank[12];
crank latchAssemblySecondaryCrank[12];
roller latchRoller[12];

gearBoxState primaryGearBoxState[12]; 10

gearBoxState secondaryGearBoxState[12];

latchState primaryLatchState[12];
latchState secondaryLatchState[12];

forall (i in 0 . . 11) {
gearBox[i](primaryGearBoxState[i],

secondaryGearBoxState[i],
primaryRingGear,
secondaryRingGear, 20

latchAssemblyPrimaryCrank[i],
latchAssemblySecondaryCrank[i]);

structuralLatchAssembly[i](primaryLatchState[i],
secondaryLatchState[i],
latchAssemblyPrimaryCrank[i],
latchAssemblySecondaryCrank[i],
latchRoller[i]);

}

if ((primaryRingGear = ringGear.forceLatching) or 30

(primaryRingGear = ringGear.forceUnlatching)) {

exists (i in 0 . . 11) {
(primaryGearBoxState[i] = gearBoxState.jammed) or
(primaryLatchState[i] = latchState.jammed);

}

}

if (secondaryRingGear = ringGear.forceUnlatching) {

exists (i in 0 . . 11) {
(secondaryGearBoxState[i] = gearBoxState.jammed) or 40

(secondaryLatchState[i] = latchState.jammed);
}

}

}

Figure 5. A LYDIA model of the top level hard-docking

system.

the reasoning, but this worst-case scenario does not appear in

practice, something we will see in the experimental section of
this paper.

Latch Tab— The latch tab is the counterpart of the latch as-

sembly (the docking system is androgynous). It is supplied
with a load-sensing bolt, which provides an important diag-

nostic information about the docking process. Note that we

model the hard-docking system of the chaser vehicle only.

Had it been assumed the diagnostic data to be observable on

both the target and chaser vehicles, then it would be possible
to discover a wider-range of fault situations2. In the current

case, it is not possible to distinguish between, e.g., a broken

latch tab and a broken roller in the opposite latch assembly

in the target docking system. The model of the latch tab is

shown in Figure 6.

2Such a combination of sensed data, however, would require a communi-
cation between the target and chaser diagnostic engines.

type tabState = enum { healthy, faulty };
type threshold = enum { below, above };
type sig = enum { minus, zero, plus };

type loadSensingBolt = struct { threshold load, sig fderSign };

type tabPhase = enum { latching, latched, unlatching, unlatched };

system LatchTab(tabPhase dockingTabPhase)
{ 10

loadSensingBolt bolt;
attribute observable(bolt) = true;

tabState state;
attribute health(state) = true;
attribute probability(state) = cond(state)
(

tabState.healthy −> 0.99;
tabState.faulty −> 0.01

); 20

if (state = tabState.healthy) {

switch (dockingTabPhase) {

tabPhase.latching −>

{

bolt.fderSign = sig.plus;
}

tabPhase.latched −>

{

bolt.load = threshold.above; 30

bolt.fderSign = sig.zero;
}

tabPhase.unlatching −>

{

bolt.fderSign = sig.minus;
}

tabPhase.unlatched −>

{

bolt.load = threshold.below;
bolt.fderSign = sig.zero; 40

}

}

}

}

Figure 6. A LYDIA model of the latch tab component.

The model of the latch tab uses a qualitative landmark value

[14] to indicate the load on the bolt. It is represented as
an enumeration of type range. In further implementation

steps, there is a process which binds quantitative values to

each qualitative type (e.g., it would be determined that a

qualitative variable x of type threshold has the value x =

threshold.above iff x > k, where k is the specified measure-
ment of force (k represents the sensor reading).

The mechanism for deriving these bindings is outside the

scope of this overview paper, but the mentioning of their use

is essential for understanding the technique. The threshold
value in this case distinguishes the latched from the unlatched

stages. The load and time derivative of the load are combined

in the LYDIA structure loadSensingBolt describing the load

sensing bolt.

To model the load-sensing bolt, part of the latch tab, we use

the loadSensingBolt structure. One of its variables (fderSign)

contains the sign of dF

dt
, where F is the force measured by

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 4, 2009 at 15:45 from IEEE Xplore.  Restrictions apply. 



the load-sensing bolt. Such an explicit sign algebra provides

a simple way of reasoning over (explicit) time and state. At

present, LYDIA and UPTIME can not perform qualitative dif-
ferentiation and integration but we are planning to implement

such features for the future versions of the software and the

IBDM model.

For this particular component we have specified a weak-fault
model; that is the component is constrained in its healthy state

only. The faulty behavior of the latch tab is not specified in

the model. One of the implications of this is the derivation by

the automatic reasoner of the conclusion that the component

is faulty but it behaves is healthy. This is not a problem as the
latter health-state has very low probability and the diagnosis

search is terminated before such diagnoses have been gener-

ated. On the other hand, weak-fault modeling decreases the

complexity of the reasoning [8].

3. AUTOMATED COMPUTATION OF

DIAGNOSIS WITH LYDIA AND UPTIME

This section introduces some formalism for MBD and illus-

trates a couple of algorithms for computing diagnosis. We

analyze compilation trade-offs between time and space with
different representation.

Preliminaries

We start by briefly recalling the basic notation of consistency-

based diagnosis [8].

Definition 1 (Diagnostic Problem). A diagnostic problem

DP is defined as the triple DP = 〈 SD,COMPS,OBS〉 , where
SD is a propositional theory describing the behavior of the

system, COMPS is a set of assumable variables in SD, and

OBS is a term stating an observation over some set of “mea-

surable” variables in SD.

In this paper we assume that for any propositional theory SD,

SD �|= ⊥ and SD is not valid.

Intuitively, LYDIA compiles a model like the one discussed in

Section 2 to SD, where SD is a language over which we can
execute queries like, e.g., determining if ∆ |= SD ∧ OBS.

Definition 2 (Diagnosis). A diagnosis for the system DP =

〈 SD,COMPS,OBS〉 is a set D ⊆ COMPS such that:

SD ∧ OBS ∧

[
∧

c∈ D

¬hc

]

∧




∧

c∈ (COMPS\D )

hc



 �|= ⊥

When many variables in OBS are of uncertain values, which

is often the case in practice, the diagnostic problem DP be-

comes underconstrained, leading to a large number of diag-
noses (in the worst-case exponential of the number of com-

ponents). Hence, we are interested in competing these diag-

noses only, which are not “included” in another diagnosis.

Definition 3 (Minimal Diagnosis). A diagnosis D is mini-

mal if no proper subset D ′ ⊂ D exists such that D ′ is also a

diagnosis.

The notions of diagnosis and minimal diagnosis are useful

only in weak-fault models; these are models in which only

the nominal behavior of the components is specified. If the
opposite holds, then a superset of a minimal-diagnosis is not

necessarily a diagnosis. We call weak, these models for which

any superset of a diagnosis is also a diagnosis.

In models which specify faulty behavior (or, equivalently, un-
restricted propositional theories) we define partial diagnosis

to be any implicant of SD. Such partial diagnoses are more

convenient in diagnostic reasoning (as they work on any the-

ory), but their computation is more difficult [8].

Definition 4 (Partial Diagnosis). A term ∆ over a set of
assumable variables h ∈ COMPS is a partial diagnosis of

SD ∧ OBS iff ∆ |= SD ∧ OBS.

Similar to minimal diagnoses, we can impose a condition of
minimality on partial diagnoses. Intuitively a kernel diag-

nosis is a partial diagnosis which does not contain a smaller

diagnosis.

Definition 5 (Kernel Diagnosis). A partial diagnosis ∆ is a
kernel diagnosis iff no ∆ ′ |= SD ∧ OBS exists, such that ∆ ′

is the conjunction of a proper subset of the literals in ∆ .

The LYDIA language supports variables both in the Boolean
and finite integer (FI) domains. The LYDIA toolkit proposes

two approaches for unifying this – encoding FI variables as

Booleans and vice-versa [12]. Encoding FI into Boolean is

trivial and we will not discuss it. Working directly in the FI

domain is a preferred option and below we introduce a mul-
tivalued representation very-close to the traditional Boolean

one and suitable to conventional propositional algorithms

(e.g., DPLL).

Definition 6 (Multi-Valued Literal). A multi-valued vari-

able vi ∈ V takes a value from a finite domain, which is
an integer set D i = {1,2,...,m }. A positive multi-valued

literal l+j is a Boolean function l
+

j ≡ (vi = dk), where

vi ∈ V,dk ∈ D i. A negative multi-valued literal l−j is a

Boolean function l−j ≡ (vi �= dk), where vi ∈ V,dk ∈ D i. If
not specified, a literal lj can be either positive or negative.

It is possible to build multi-valued representation for each

Boolean counterpart, resulting in multi-valued Wff, Multi-
Valued Conjunctive Normal Form (MVCNF), Multi-valued

Decision Diagrams (MDD), etc. Doing this often prevents

combinatorial blow-ups caused by computationally expensive

encodings.

Having these basic definitions of consistency-based diagno-

sis, we can compile our models to a number of representa-

tions. One should note that compilation does not decrease the
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complexity of the diagnosis problem. Compilation can only

trade between off-line time, on-line time and space. Our no-

tion of off-line and on-line time is non-strict, depending on
which representation is used at which phase of diagnosis. In

the section that comes next we will discuss the properties of

several very common representations, as well as some lan-

guages introduced for the first time in LYDIA and UPTIME.

Knowledge Compilation Map

As the complexity of diagnosis is well-known [24], there is
no representation which supports diagnostic queries of inter-

est (e.g. finding implicants and prime implicants) efficiently

both in time and space. For this purpose we convert our mod-

els to a number of representations having different properties

– some of them can check consistency in time linear of the
size of the representation (but they require exponential time

of the number of the variables in the theory for generating

the representation), others have small size but require, in the

worst-case exponential time for some queries of interest.

If, a model consists only of Boolean variables, it is straight-

forward to convert it to propositional theory. The implemen-

tation details of LYDIA, omitted in this paper for brevity,

include variable and constraint rewriting, type-checking and

system inlining. The result of this LYDIA model compilation
process is a propositional theory.

Definition 7 (Propositional Wff). A propositional Wff is
a formula over the literals l1,l2,...,ln , and the standard

Boolean connectives ¬,⇔ ,⇒ ,∧ ,∨ .

While it is possible to compute implicants (partial diagnoses)

directly in propositional Wff [21], it is often convenient (re-

quires simpler implementation) to convert the propositional

model to a simpler representation like Conjunctive Normal

Form.

Definition 8 (CNF). A propositional formula is in Conjunc-

tive Normal Form (CNF) if it is a conjunction of disjunc-
tions of literals, that is φ = γ 1 ∧ γ 2 ∧ ... ∧ γ n , where

γ i = (li1 ∨ li2 ∨ ...∨ lim i
)and lij is a negative or positive

literal.

As we have seen in Section 2, models of engineered systems

consist of the conjunction of multiple propositional formulae,

each imposing constraints on the functioning of a component.

This makes CNF an easy target for compiling LYDIA mod-
els. Unfortunately, finding all satisfiable assignments (the

ultimate goal of an MBR reasoner) in a CNF (ALLSAT) is

in P#. On the other extreme stays DNF, unfortunately con-

verting CNF to DNF for underconstrained models results in a

combinatorial blow-up.

Definition 9 (DNF). A propositional formula is in Disjunc-

tive Normal Form (DNF) if it is a disjunction of conjunc-
tions of literals, that is φ = γ 1 ∨ γ 2 ∨ ... ∨ γ n , where

γ i = (li1 ∧ li2 ∧ ...∧ lim i
)and lij is a negative or positive

literal.

LYDIA and UPTIME use in fact more representation (as is vis-

ible from Figure 7), the CNF and DNF being the extremes as

DNF can be exponentially bigger than an equivalent CNF but
checking consistency in DNF is linear to the representation

size which exponential in CNF.

The reason for the compilation map in Figure 7 is threefold.

First, we need to reach logically equivalent representation
which allows us to cross-validate the correctness of the LY-

DIA tools. The implementation of other state-of-the-art tech-

niques (like CDA* [26]) allows us to verify the final diagnos-

tic result and to compare the diagnostic performance under

fair conditions. Finally, and most importantly, almost any
translation causes combinatorial explosion with some mod-

els.

Models or submodels, depending on different characteristics

(e.g., weak/strong modeling, etc.) can produce very different
compilation results. More precisely, there are Boolean func-

tions which have linear OBDD representation, but exponen-

tial irreducible CNF. Therefore it is beneficial to choose dif-

ferent representations for different models and parts of mod-

els. Full complexity analysis of all representations is impos-
sible due to lack of space in this paper but is available in [5].

An important source of speed-up in modeling can be the

model structure. The representations we have defined so far

discard the hierarchical information which can lead to an ex-
plosion in the size of the compiled model. Therefore we in-

troduce the hierarchical equivalents of our knowledge repre-

sentation and in the next part of this section we will discuss

an algorithm which utilizes this hierarchy for improving the
efficiency of the diagnostic search.

Definition 10 (Hierarchical System). A hierarchical sys-

tem is a rooted, edge-labeled, acyclic multidigraph H =

〈 V,ρ ,E 〉 , where every node Vi, Vi ∈ V , contains a knowl-

edge base SDi and a set of components COMPSi. The multi-
digraph is such that COMPS1 ∩ COMPS2 ∩ ...∩ COMPSn =

∅ . The root node is marked by ρ and the labels of the edges

in E are maps f :SDi → SDj between the literals in the

knowledge bases represented by the nodes Vi and Vj.

Some Diagnostic Algorithms

The first algorithm we show is similar to the CDA* in [26].

A multi-valued version of it, we use for all the IBDM experi-

ments, shown in Section 4.

We assume that components failures are independent and use
the a priori probability of a fault term to guide a heuristic

search for the most likely diagnosis. The heuristic function

for a candidate term σ is f(σ )= P1(h1)P2(h2)...Pn(hn),

where h1,h2,...,hn are all the health variables in φ . In this

case the probability of hi being true if hi is in σ is P (hi)and
Pi(hi)= 1− P (hi)if ¬hi is in σ . If neither hi nor ¬hi are

present in σ , Pi(hi) = m ax(P (hi),1 − P (hi)). Searching

while using f(σ ) as a heuristics, allows us to construct the

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 4, 2009 at 15:45 from IEEE Xplore.  Restrictions apply. 



Lydia Model Compiled Model

Boolean Wff OBDDMV Wff

Boolean DNFBoolean CNFMV sdNNFMV CNF

DiagnosisMV DNF

Lydia Compiler

LCM to Wff

MV Table Scan

MV ALLSAT

LCM to MV 

Wff

Table ScanCDA*MV CDA*

Figure 7. LYDIA and UPTIME translation map.

CDA* algorithm shown below.

Algorithm 1 CDA* in CNF.

1: function CDA*(H )

inputs: φ , a theory in CNF

local variables: Q , priority queue

R , a set of terms
C , a set of conflicts

c, term

2: PUSH(Q , INITIALSTATE( φ ))

3: while (∆ ← POP(Q )) �= ∅ do

4: if ∆ |= φ then

5: R ← R ∪ ∆

6: if TERMINATE()then

7: break

8: end if

9: else

10: C ← C ∪ ∆

11: REFINECONFLICTS(C )

12: end if

13: PUSH(Q ,RESOLVINGSUCCESSORS(∆ ,C ))

14: end while

15: return R

16: end function

The auxiliary functions PUSH and POP perform the respec-
tive priority queue manipulation on Q (POP returns ∅ if the

queue is empty). The initial state in the search tree, returned

by INITIALSTATE, is the empty term. The RESOLVINGSUC-

CESSORS functions utilizes the heuristic function discussed

above to return these candidate diagnoses which maximize
the a priori probability and at the same time resolve all the

conflicts accumulated in C .

For consistency checking (line 4) we can use DPLL [6] or,

alternatively, an incomplete consistency checker like Binary-
Constraint Propagation (BCP). It is interesting to note that

even when we use the complete DPLL consistency checker,

the consistency can be checked efficiently due to the fact that

the problem is overconstrained.

The introduction of hierarchical systems allows us to simi-

larly define hierarchical CNF and hierarchical DNF (the lat-

ter is not DNF anymore but is a restricted form of Nega-

tion Normal Form). We call this hierarchical DNF semi-

decomposable Negation Normal Form (sdNNF). A hierarchi-
cal system is simply a conjunction of Boolean or multi-valued

Wff. It is possible to discard this information (i.e., to flatten

out the hierarchy) and to continue transforming the Wff in its

flat representation.

Instead of flattening a hierarchical system we will selectively

apply compilations on subsystems of SD. The need to ex-

ploit hierarchy stems from the inherent high-computational

price of MBR. By exploiting the hierarchical information and
selectively compiling parts of the model it is possible to in-

crease the diagnostic performance and to trade cheaper pre-

processing time for faster run-time reasoning. Our hierarchi-

cal algorithm, being sound and complete, allows large mod-

els to be diagnosed, where compile-time investment directly
translates to run-time speedup.

Furthermore UPTIME repartitions and coarsens the original

model in an attempt to minimize the subsystem connectivity,

a process which leads to faster run-time fault diagnosis at the
price of some pre-processing time. This is explained in the

two algorithms below which show an advanced way for mix-

ing compilation and hierarchical reasoning for fast diagnosis.

The implementation of the two algorithms below is an impor-

tant part of the UPTIME reasoning tool-kit.

Algorithm 2 shows the compilation of a LYDIA model to

sdNNF. First it converts the model L to a hierarchical multi-

valued NNF. Let the NNF N be a conjunction of Wff N =

ψ 1 ∧ ψ 2 ∧ ...∧ ψ n . Then we build an interaction graph G in
a fashion similar to [10] by having a node for each expression

ψ i in N and an edge in G if two expressions share a variable.

We also weigh the edges of G with the number of variables

two Wff ψ i and ψ j share.
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Algorithm 2 Compilation of a LYDIA Model to sdNNF.

1: function SDNNFFROMLYDIAMODEL(L,K ,M )

inputs: L,a LYDIA model
K , number of partitions, integer

M , maximum DNF size, integer

local variables: G , interaction graph

P , a set of set of node indices

X , an OBDD
N = ψ 1 ∧ ψ 2 ∧ ...∧ ψ n , an NNF

W , sdNNF, initially ∅

2: N ← LYDIACOMPILE(L)

3: G ← INTERACTIONGRAPH(N )

4: P ← PARTITIONGRAPH(G ,K )

5: for all p ∈ P do

6: X ← NNFTOOBDD(
∧
i∈ p

ψ i)

7: W ← W ∧ OBDDTODNF(X ))
8: end for

9: while ∃ γ ,δ ∈ W :COUNTSOL(γ ,δ )< M do

10: SDNNFNODESMERGE(W ,γ ,δ )

11: end while

12: return W

13: end function

Note that PARTITIONGRAPH is, itself, a computationally ex-
pensive process (it can be exponentially hard of the number

of nodes in the graph G ). LYDIA uses an approximation al-

gorithm for graph partitioning [15] to solve the last problem.

After the partitioning phase, we use an approximate model

counter to merge nodes in the hierarchical description until
any future merging would increase the number of terms in a

node to a value exceeding a parameter M .

Next, we proceed with the run-time part, which is based on
A*. We assume that components failures are independent and

use the a priori probability of a fault term to guide a heuris-

tic search for the most likely diagnosis. We assign the same

small probability to all the components [7] as the reasoning

technique is not probability-driven and it is possible to use
other heuristics with similar results (e.g., the cardinality of a

fault-mode).

Algorithm 3 computes diagnoses from the model produced

by Algorithm 2 and OBS. The difference between the stan-
dard A* algorithm used in diagnosis, and this hierarchical

version is that we try to find a conjunction of terms as opposed

to conjunction of assumable variables consistent with OBS.

The granularity of our approach is coarser and adjustable due

to the parameterization of Algorithm 2 which allows trading
space for time and in some cases reducing the overall compu-

tational complexity.

In this particular example Algorithm uses sdNNF but any hi-

erarchical form with nodes consisting of tractable knowledge-
bases will achieve similar results. In the main loop Algorithm

3 algorithm is chosen such a term cfrom the hierarchical node

such that some heuristic estimate f(c) is maximized. When

Algorithm 3 A* search in sdNNF dictionary.

1: procedure HIERARCHICALDIAGNOSE(H )

inputs: H , hierarchical node

local variables: Q , priority queue

s,c, terms

2: PUSH(Q , INITIALSTATE(H ))
3: while (c ← POP(Q )) �= ∅ do

4: ENQUEUESIBLINGS(Q ,c)

5: if DIAGNOSIS(c) then

6: OUTPUTDIAGNOSIS(c)

7: else

8: if (s ← NEXTBESTSTATE(H ,c)) �|= ⊥ then

9: PUSH(Q ,s)

10: end if

11: end if

12: end while

13: end procedure

a consistent conjunction of terms is found from all the nodes

in the hierarchy, OUTPUTDIAGNOSIS is invoked to send the

result to the user.

4. EXPERIMENTS AND PERFORMANCE

RESULTS

Test-Cases

This experimental section has two subsections. First, we dis-

cuss some high-level failure scenarios and the response of the

diagnostic reasoner to them. Second, we analyze a number of
component failures and check if they are correctly identified

by the MBD loop.

High-Level Scenarios

Next we discuss some expected fault scenarios and how the

UPTIME framework and the supplied IBDM model react to

these scenarios.

Spurious “hard docking complete” signal by the IBDM—

Consequences: The target spacecraft will resume attitude

control and potentially break the link to the chaser spacecraft

and may cause collision of both vehicles.

In this scenario we discuss a situation in which the Guidance,

Navigation and Control (GNC) system supplies the diagnos-

tic engine with a false signal indicating that the hard-docking

system is in latched mode (the variable dockingPhase as-

sumes the value primaryLatched). The result of the diagnosis
is shown in Table 1.

Obviously, in this case the load measured by the load-sensing

bolts of the latch tabs would be below the specified landmark

value as specified in the observation list. The leading diag-
nostic result indicates that the root cause of the fault is a spu-

rious signal which coincides with our diagnostic observation

assumptions.
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Symptoms (Observations)

Variable Value

dockingPhase primaryLatched

latchTab[0].bolt.load below

latchTab[1].bolt.load below

.

.

.

latchTab[11].bolt.load below

Leading Diagnoses

Variable Value

controlState spuriousLatched

Table 1. Diagnosis in case of a spurious “hard docking

complete” signal by the IBDM.

Spurious “undocking complete” signal by the IBDM—Con-

sequences: The chaser spacecraft will start its thrusters to

initiate the departure while the physical link is still in place.

The scenario that follows is the opposite of the previous one.

In this case the GNC system supplies the diagnostic engine

with a false signal indicating that the hard-docking system
is in unlatched mode (the variable dockingPhase has prima-

ryUnatched or secondaryUnlatched value). The result of the

diagnosis is shown in Table 2.

Symptoms (Observations)

Variable Value

dockingPhase primaryUnlatched

latchTab[0].bolt.load above

latchTab[1].bolt.load above

.

.

.

latchTab[11].bolt.load above

Leading Diagnoses

Variable Value

controlState spuriousUnlatched

Table 2. Diagnosis in case of a spurious “undocking

complete” signal by the IBDM.

Again we have a diagnosis which clearly locates the root case
of failure. The second diagnosis (not shown in this paper) is

that all twelve latch tabs are faulty, which is less likely than

to have a spurious “undocking complete” signal.

Inadvertent activation of the undocking sequence— Conse-

quences: Potential depressurization of the target vehicle (ha-

bituated space elements only).

This test-case aims at diagnosing the unwanted situation in

which the undocking sequence is activated outside of the

planned release cycle. To allow the monitoring of such situa-
tions our model provides two observation variables: docking-

Phase and controlDockingPhase. In a practical implementa-

tion the values of the two observables should be supplied in-

Symptoms (Observations)

Variable Value

dockingPhase primaryUnlatching

controlDockingPhase primaryLatched

Leading Diagnoses

Variable Value

controlState inadvertentAction

Table 3. Diagnosis in case of an inadvertent undocking.

dependently, or, for the latter, even manually. Normally, the

value of the dockingPhase variable is requested automatically

from the GNC, and if it differs from the desired state for the
hard-docking system there is an indication of an inadvertent

action.

Table 3 simulates a scenario in which the desired and auto-

matically supplied docking phase differ. The conclusion of
the diagnostic reasoner is that there is an inadvertent action3.

Note that the diagnostic solver we use for this paper (part

of the UPTIME framework) is designed to reach such “sin-

gle fault” conclusions for a very small amount of computa-

tional time. This would allow such an undesired scenario to
be stopped and reversed in a timely fashion.

Loss of capability to open the hard docking link— Conse-

quences: May cause severe degradation or even loss of the

target’s mission.

In this scenario the hard-docking system is put in “primary

latching” mode, but it fails preventing the completion of the

hard-docking process. This results in inability to open the

hard docking link endangering the completion of the mission.

Loss of capability for opening the hard docking link may be
a result of the failure of any component or a set of compo-

nents. We illustrate a non-nominal latching process by as-

suming a non-increasing load in one of the load sensing bolts

and simultaneously an increased current measured in one of

the EMA’s electric motors.

In Table 4 the leading diagnosis consists of a double-fault (the

complexity of finding all diagnoses is exponential to the num-

ber of components in a system). The so computed primary di-

agnosis is a plausible explanation of the observation. This ex-
ample suggests that it is possible to detect situations prevent-

ing latching and that any diagnosis indicating non-nominal

behavior, would result in the loss of capability of completing

the hard-docking phase.

Component Failure Scenarios

Next, some typical scenarios will be discussed in which a
component or a set of components malfunction. The main

task of diagnosis is, then, to identify the root cause of fail-

3The task of inferring that this is a case of inadvertent undocking we leave
to the human controller or to a future version of the model.
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Symptoms (Observations)

Variable Value

dockingPhase primaryLatching

latchTab[5].bolt.fderSign zero

primaryEMA.current above

.

.

.
.
.
.

Leading Diagnoses

Variable Value

primaryGearBoxState[8] jammed

latchTab[5].state faulty

Table 4. Non-nominal latching behavior illustrating a loss

of capability for hard-docking and consequently opening the

hard-docking link.

ure providing an explanation of the observed behavior. We

illustrate the workings of our technique by choosing open-

or short-circuited micro-switches, faulty latch tabs, jammed

gear-boxes and latch assemblies, etc. In this paper we il-
lustrate our approach with faults of small cardinality but the

mechanism is equally applicable in cases when multiple com-

ponents are malfunctioning simultaneously.

We start with a single short-circuited micro-switch scenario
(cf. Table 5). It is enough to configure the docking system

in “latched” state, to arbitrarily choose a latch assembly and

to supply a “closed” value for one of the open primary mech-

anism micro-switches. As the latch mechanism is engaged

the primary crank is in “latched” mode, hence the position
of the micro-switches detecting the “unlatched” latch assem-

blies should be in “open” state. We have a discrepancy and

most likely a faulty switch.

Symptoms (Observations)

Variable Value

dockingPhase primaryLatched

structuralLatchAssembly[0]. open

� primaryLimitSwitchAssemblyOpened.

� limitSwitch[0].reading

Leading Diagnoses

Variable Value

structuralLatchAssembly[0]. shortCircuited

� primaryLimitSwitchAssemblyOpened.

� limitSwitch[0].state

Table 5. Diagnosis in case of a short-circuited micro-switch.

Actually, the diagnostic engine does not need the state of the

mechanism in order to determine that there is a short-circuited

micro-switch. Due to the high redundancy in the latch posi-

tion sensors, there are four micro-switches for the “latched”

and “unlatched” positions of the primary and secondary latch
mechanisms. If one switch is faulty, the position of the other

three will supply enough information for the reasoning engine

to determine the root cause of failure.

The diagnostic process is less intuitive when we have two

short-circuited micro-switches in the same latch assembly

and limit-switch block. Such a scenario is intuitively less
likely and it is also more computationally expensive to de-

tect it (due to the a priori probability heuristics [26] used in

our search algorithm). Table 6 illustrates such a case.

Symptoms (Observations)

Variable Value

dockingPhase primaryLatched

structuralLatchAssembly[0]. open

� primaryLimitSwitchAssemblyOpened.

� limitSwitch[0].reading

structuralLatchAssembly[0]. open

� primaryLimitSwitchAssemblyOpened.

� limitSwitch[1].reading

Leading Diagnoses

Variable Value

structuralLatchAssembly[0]. shortCircuited

� primaryLimitSwitchAssemblyOpened.

� limitSwitch[0].state

structuralLatchAssembly[0]. shortCircuited

� primaryLimitSwitchAssemblyOpened.

� limitSwitch[1].state

primaryGearBoxState[0] jammed

Table 6. Diagnoses in case of two short-circuited

micro-switches.

In the case of the double-failure symptom (two short-circuited

micro-switches in the same assembly) we have the most-
likely diagnosis being, indeed, two faulty switches. The

second diagnosis, however, is also plausible and that is a

“jammed” gear-box (the third diagnosis is a “jammed” latch

assembly but the hard-docking system lacks the ability of dis-
cerning faults in the gear-boxes from mechanical faults in the

latch assemblies). Note, that in the “latched” and “unlatched”

states of the system it is not possible to obtain a diagnos-

tic information indicating a jammed “mechanisms” from the

EMAs as the motors are switched-off (i.e., there is no mea-
surement of the current supplied to their motors).

Following the examples with short-circuited limit-switches

we briefly discuss two similar scenarios in which the micro-

switches are open-circuited, that is, they do not indicate cor-
rectly a closed state when they are in a closed position.

Table 7 shows a case in which one of the switches of a pri-

mary latch assembly’s switch block does not make contact in

the primary latched position of the mechanism. The fault-
diagnostic engine correctly identifies the cause of the error.

Table 8 demonstrates the failure of two switches in a single

latch assembly’s switch board. Similar to the case of the two
short-circuited micro-switches (cf. Table 6) the first two diag-

noses are of interest: two faulty switches and a jammed gear-

box. The second diagnosis was not simulated in the original
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Symptoms (Observations)

Variable Value

dockingPhase primaryLatched

structuralLatchAssembly[0]. closed

� primaryLimitSwitchAssemblyClosed.

� limitSwitch[0].reading

Leading Diagnoses

Variable Value

structuralLatchAssembly[0]. openCircuited

� primaryLimitSwitchAssemblyClosed.

� limitSwitch[0].state

Table 7. Diagnoses in case of an open-circuited

micro-switch.

Symptoms (Observations)

Variable Value

dockingPhase primaryLatched

structuralLatchAssembly[0]. closed

� primaryLimitSwitchAssemblyClosed.

� limitSwitch[0].reading

structuralLatchAssembly[0]. closed

� primaryLimitSwitchAssemblyClosed.

� limitSwitch[1].reading

Leading Diagnoses

Variable Value

structuralLatchAssembly[0]. openCircuited

� primaryLimitSwitchAssemblyClosed.

� limitSwitch[0].state

structuralLatchAssembly[0]. openCircuited

� primaryLimitSwitchAssemblyClosed.

� limitSwitch[1].state

primaryGearBoxState[0] jammed

Table 8. Diagnoses in case of two open-circuited

micro-switches.

fault-scenario, but is a plausible explanation of the observed

behavior.

In the next two cases we turn our look into the latch tabs.

We will analyze cases when the hard-docking system is in

the process of latching or unlatching but the load-sensing

bolts (cf. Section 2) do not supply load information indicat-

ing nominal behavior. Once again, for brevity, we discuss
only cases with single or double faults but the model-based

framework is capable of correctly handling higher-cardinality

faults.

A sound and complete search algorithm like the CDA* im-
plemented in UPTIME provides all the explanations for an

observed behavior. The order, however, depends on the a pri-

ori health variable probability assigned by the modeler. At

this phase of the study the probability values are approximate

and are used for ordering of the results only (and more impor-
tantly for guiding the search algorithm). This is contrasted to

a fully probabilistic inference solver which can use the a pos-

teriori probability of a fault, given an observation, for quanti-

fying its belief for a future state of the system being analyzed.

Symptoms (Observations)

Variable Value

dockingPhase primaryUnlatching

latchTab[0].bolt.fderSign minus

latchTab[1].bolt.fderSign minus

.

.

.
.
.
.

latchTab[10].bolt.fderSign minus

latchTab[11].bolt.fderSign zero

Leading Diagnoses

Variable Value

latchTab[11].state faulty

Table 9. Diagnosis in case of a faulty latch tab.

In Table 9 the docking state is set to be in “primary unlatch-
ing” mode. In its nominal behavior we expect the load mea-

sured by the load-sensing bolts to be decreasing until a certain

threshold is reached, and after this point, the docking-station

is obviously in an “unlatched” régime. To simulate such an
event it is enough to supply correct values for the load sens-

ing time derivative (i.e., the load is decreasing in time) for all

but one of the latch tabs.

The diagnostic engine determines the most probable fault to
be a malfunctioning latch tab (or in this case a malfunctioning

load-sensing bolt) – the same which has produced inconsis-

tent observation for the state of unlatching.

Symptoms (Observations)

Variable Value

dockingPhase primaryUnlatching

latchTab[0].bolt.fderSign minus

latchTab[1].bolt.fderSign minus

.

.

.
.
.
.

latchTab[9].bolt.fderSign minus

latchTab[10].bolt.fderSign minus

latchTab[11].bolt.fderSign minus

Leading Diagnoses

Variable Value

latchTab[10].state faulty

latchTab[11].state faulty

Table 10. Diagnosis in case of two faulty latch tabs.

The scenario shown in Table 10 is similar to the previous one,

except that it manifests a double-fault. In this case two load-

sensing bolts measure non-decreasing load while unlatching.

The diagnostic conclusion is that two faulty latch tabs are the

most likely explanation of the observation. Note, that this
information is based on the observations of the load-sensing

bolts in the latch tabs of the chaser vehicle only. The diagno-

sis can be more soundly supported or refuted by information
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from the target hard-docking system (i.e., faulty correspond-

ing latch tab mechanisms in the chased vehicle would result

in the same observation but healthy latch tabs in the chaser
hard-docking mechanism).

The final scenario is a case in which we have a possibly ob-

structed movement in one or more of the hard-docking system

mechanisms. We show the results of this experiment in Table
11.

Symptoms (Observations)

Variable Value

dockingPhase primaryLatching

latchTab[0].bolt.fderSign plus

latchTab[1].bolt.fderSign plus

.

.

.
.
.
.

latchTab[11].bolt.fderSign plus

primaryEMA.current above

Leading Diagnoses

Variable Value

primaryGearBoxState[0] jammed

primaryGearBoxState[1] jammed

.

.

.
.
.
.

primaryGearBoxState[11] jammed

primaryLatchState[0] jammed

primaryLatchState[1] jammed

.

.

.
.
.
.

primaryLatchState[11] jammed

primaryEMA.stateMotor2 faulty

Table 11. Diagnoses in the event of a jammed gear-box or

latch mechanism.

The hard-docking system is in the “latching” state for this

experiment. The observation which conflicts with the nomi-
nal state of the system is the increased current consumption

by a motor in the primary EMA. The IBDM hard-docking

system states that an increased power consumption is an in-

dication of a mechanical failure in one of the gear-boxes or

in one of the latch-assemblies. The system lacks precision
of locating the actual cause of failure as no observable pa-

rameter exists which would allow narrowing down the actual

faulty mechanical mechanism. We show the first twenty-five

diagnoses (note that according to the model based diagno-

sis theory an exponential number of diagnoses to the number
of components may exist). These diagnoses are that either a

faulty gear-box exists or a faulty latch-mechanism exists. Fi-

nally, it is also possible that the driving motor in the EMA is

faulty.

Performance Evaluation

For the above experiments we have chosen to translate the
LYDIA model to Multi-Valued Conjunctive Normal Form

(MVCNF) [12] and then to perform A* style search in the

compiled form. We note that LYDIA and UPTIME offer mul-

tiple chains of tools capable of computing the same diagnoses

and the above selection of modules is not necessarily the opti-

mal compilation path. Additional speedup can be achieved by
exploiting compilation schemes like the ones cited in Section

1.

The total compilation time for our model, is below 1 s and is

therefore negligible hence we omit compilation performance
breakdown. The memory requirements are conservative as

well, with the compiled MVCNF form containing 425 vari-

ables of which 161 health and 138 observables and a total of

1328 clauses. A representation of the model, which has not

been optimized for space occupies less than 100Kb of RAM.

The results from the test-scenarios are shown in Table 12.

These include all the examples from Section 4 and some ad-

ditional cases. The search times vary from ≈ 100 ms to

≈ 250 s. The most computationally difficult cases require
longer search due to the low probability of the faults, the high

cardinality of the leading fault and the computation of many

diagnoses.

All diagnoses with a leading single fault are computed in
time less than 1 s, which indicates very good performance

of the solvers in comparison to state-of-the art research [19],

[26]. Unfortunately, at the time of writing of this paper, to

our best knowledge no benchmark for comparing the perfor-

mance of MBD solvers exist. Such a benchmark would allow
a more precise comparison of the diagnosis performance to

third-party implementations.

Scenario N Time [ms]

Spurious “Docking Complete” (cf. Table 1) 1 180

Spurious “Undocking Complete” (cf. Table 2) 1 233

Inadvertent Undocking (cf. Table 3) 1 166

Loss of Docking Capability (cf. Table 4) 1 37 112

SC Microswitch (cf. Table 5) 1 805

SC 2-Microswitches (cf. Table 6) 4 21 409

SC 3-Microswitches 2 21 486

SC 4-Microswitches 3 5 758

OC Microswitch (cf. Table 7) 1 242

OC 2-Microswitches (cf. Table 8) 2 5 651

OC 3-Microswitches 2 21 743

OC 4-Microswitches 2 21 078

Faulty Latch Tab (cf. Table 9) 1 253

Faulty 2 Latch Tabs (cf. Table 10) 2 246 663

Jammed Gearbox or Latch (cf. Table 11) 25 14 912

Table 12. Time for computing the first N diagnoses with

different observation scenarios.

The performance data in this section is no substitute for a full

performance analysis of LYDIA and UPTIME but an indica-

tion that the selection of tools offers computation of diagnosis

in acceptable time.

All the experiments described in this paper are performed on

a 3 GHz Pentium IV CPU.
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5. CONCLUSIONS

Docking of spacecraft is a complex operation involving mul-

tiple mechanisms; an operation which can lead to faults with

potentially catastrophic consequences endangering mission

success and human-life (in manned missions). In the event of
a failure, a timely recovery action would be necessary to pre-

vent such catastrophic scenarios. A human controller on the

ground or an astronaut in one of the vehicles can be greatly

facilitated if an automatic root cause of failure is computed

by a MBD framework. Manual troubleshooting can be diffi-
cult or impossible in the limited amount of time available for

computing a recovery action.

Model-based reasoning can reduce the time and cost for creat-

ing troubleshooting procedures and applied automatically can
provide a centralized or distributed [20] mechanism for deter-

mining causes of failure. Our experience shows that such an

approach is sound and reasonably fast for complex systems

like the hard-docking system, the ATV propulsion system [2]

and our suggestions is to continue with the experimentation
and application of this emerging technology to more, bigger

and more complex spacecraft subsystems.

The purpose of this paper is twofold. First, we analyze the

process of creating a health-model of an IBDM hard-docking
system. The health model, created in the LYDIA language, is

annotated and the modeling decisions are motivated. We sug-

gest the use of the same technique for creating more precise

docking models as well as models for diagnosing other ATV

[2] subsystems.

The second purpose of this paper is to illustrate the use of

a model-based diagnosis framework with the model of the

IBDM hard-docking system. A number of experiments were
performed and the results analytically confirmed, demonstrat-

ing the soundness of the software packages and techniques.

In the future, analyzing recorded experimental data from

ground factory testing of the hard-docking system would al-
low modeling with higher accuracy. We suggest the recording

and analysis of time-series of, e.g., the current of the EMA’s

motors, the load in the load-sensing bolts, etc. These time se-

ries would be analyzed, and modeled for obtaining additional

diagnostic precision and more important prognosis of faults
before they actually happen.

We have demonstrated that qualitative models, similar to the

one described in this paper, can facilitate the trouble-shooting

of critical systems. A promising technology is the hybridiza-
tion of model-based qualitative diagnosis with quantitative

methods for obtaining both high-precision diagnosis and be-

ing able to reason in case of uncertainty. A particular inter-

esting function in this respect is the prediction of failures.

In general, prognostics would require additional signal pro-
cessing and knowledge of the physics of failure to identify

the precursors of system failures. A prime candidate in this

respect would be the analysis of the EMA currents, as physi-

cal degradation would likely to be reflected in the frequency

components of the signal.
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[2] André Bos. Software architecture for integrated vehi-

cle health management (IVHM) systems. Technical Re-

port ESA-IVHM-TN-003, Science and Technology BV,

November 2005.

[3] Karl Brace, Richard Rudell, and Randal Bryant. Ef-
ficient implementation of a BDD package. In Proc.

DAC’90, pages 40–45, 1990.

[4] Adnan Darwiche. New advances in compiling CNF into

DNNF. In Proc. ECAI’04, pages 328–332, 2004.

[5] Adnan Darwiche and Pierre Marquis. A knowledge

compilation map. JAIR, 17:229–264, 2002.

[6] Martin Davis and Hilary Putnam. A computing pro-

cedure for quantification theory. JACM, 7(3):201–215,

1960.

[7] Johan de Kleer. Using crude probability estimates to

guide diagnosis. Artificial Intelligence, 45(3):381–291,

1990.

[8] Johan de Kleer, Alan Mackworth, and Raymond Reiter.

Characterizing diagnoses and systems. Artificial Intelli-

gence, 56(2-3):197–222, 1992.

[9] Johan de Kleer and Brian Williams. Diagnosing multi-

ple faults. JAI, 32(1):97–130, 1987.

[10] Rina Dechter. Constraint Processing. Morgan Kauf-
mann Publishers Inc., 2003.

[11] Wigbert Fehse. Automated Rendezvous and Docking of

Spacecraft. Cambridge University Press, 2003.

[12] Alexander Feldman, Jurryt Pietersma, and Arjan van

Gemund. A multi-valued SAT-based algorithm for

faster model-based diagnosis. In Proc. DX’06, June
2006.

[13] H. Hoos. SAT-encodings, search space structure, and lo-

cal search performance. In Proc. IJCAI’99, pages 296–

303, 1999.

[14] Benjamin Kuipers. Qualitative reasoning: modeling

and simulation with incomplete knowledge. MIT Press,
Cambridge, MA, USA, 1994.

[15] Burkhard Monien and Stefan Schamberger. Graph par-

titioning with the party library: Helpful-sets in practice.

SBAC-PAD, pages 1550–1533, 2004.

[16] Nicola Muscettola, P. Pandurang Nayak, Barney Pell,

and Brian C. Williams. Remote agent: To boldly go
where no AI system has gone before. Artificial Intelli-

gence, 103(1-2):5–47, 1998.

[17] Delft University of Technology. LYDIA: A Lan-

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 4, 2009 at 15:45 from IEEE Xplore.  Restrictions apply. 



guage for sYstem DIAgnosis – World Wide Web Site.

http://fdir.org/lydia/.

[18] Ann Patterson-Hine, Gordon Aaseng, Gautam Biswas,

Sriram Narasimhan, and Krishna Pattipati. A review of

diagnostic techniques for ISHM applications. In Proc.

ISHEM’05, November.

[19] Barney Pell, Douglas E. Bernard, Steve A. Chien,

Erann Gat, Nicola Muscettola, P. Pandurang Nayak,

Michael D. Wagner, and Brian C. Williams. An au-

tonomous spacecraft agent prototype. In In Proc.

AGENTS’97, pages 253–261. ACM Press, 1997.

[20] Gregory Provan. A model-based diagnosis framework

for distributed systems. In Proc. DX’02, pages 16–25,
2002.

[21] A. Ramesh, G. Becker, and N. Murray. CNF and

DNF considered harmful for computing prime impli-

cants/implicates. JAR, 18(3):337–356, 1997.

[22] Raymond Reiter. A theory of diagnosis from first prin-

ciples. Artificial Intelligence, 32(1):57–95, 1987.

[23] The MathWorks, Inc. Matlab & Simulink – World Wide

Web Site. http://mathworks.com/.

[24] Farrokh Vatan. The complexity of the diagnosis prob-

lem. Technical Report NPO-30315, Jet Propulsion Lab-

oratory, California Institute of Technology, 2002.

[25] Brian Williams and Pandurang Nayak. A model-based

approach to reactive self-configuring systems. In Work-

shop on Logic-Based Artificial Intelligence, College

Park, Maryland, 1999.

[26] Brian Williams and Robert Ragno. Conflict-directed A ∗

and its role in model-based embedded systems. Journal

of Discrete Applied Mathematics, 2004.

Alexander Feldman is a doctoral re-

search fellow at Delft University of tech-

nology, while also interested in apply-

ing his research to a number of real-

world projects. He has written a num-

ber of articles on model-based diagnosis

and automated reasoning. His interests

include model-based reasoning, qualita-

tive modeling, automated planning, hybrid methods for di-

agnosis and automated problem solving. Alexander Feldman

obtained an M.Sc. degree (cum laude) in computer science

from Delft University of Technology in 2004.

Marco Caporicci is an aeronautical en-

gineer from the University of Rome,

Italy. After having worked in the com-

puter and the aerospace industry in Italy,

he joined in 1988 the European Space

Agency technical centre, ESTEC, in No-

ordwijk, The Netherlands. At ESTEC

he occupied various positions in struc-

tural engineering and space propulsion,

working on the ESA satellite and space transportation pro-

grammes. In 1995, he moved to the ESA Head Office in Paris

as Technology Engineer for Future Launch Systems first and

later on as Head of the Future Launcher and Technology

Programmes. In 2001 he moved back to ESTEC to manage

the European participation in the NASA X-38/CRV vehicle.

Since 2002 he is Head of the Atmospheric Re-entry and Hu-

man Transportation Division in the Directorate of Human

Spaceflight, with responsibility on technology developments

and operational vehicle preparation for LEO and exploration

transportation missions.

Oscar Gracia is a mechanical engineer.

He has been working in the development

of space mechanisms, structural health

monitoring and atmospheric re-entry ve-

hicles. He is also interested on the soft-

ware implementation of control systems

for mechanical systems. He received his

M.Sc. degree in Industrial Engineering

from University of Zaragoza (Spain).
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