
Interchange Formats and Automated Benchmark Model Generators for
Model-Based Diagnostic Inference

Alexander Feldman1 and Gregory Provan2 and Arjan van Gemund1

1Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Mekelweg 4, 2628 CD, Delft, The Netherlands
Tel.: +31 15 2781935, Fax: +31 15 2786632, e-mail: {a.b.feldman,a.j.c.vangemund}@tudelft.nl

2University College Cork, Department of Computer Science, College Road, Cork, Ireland
Tel: +353 21 4901816, Fax: +353 21 4274390, e-mail: g.provan@cs.ucc.ie

Abstract

This article proposes a Diagnosis Interchange Format (DIF),
an XML-based interchange format for Model-Based Diagno-
sis (MBD). Its main purposes are to allow sharing of diag-
nostic models, observation data and fault hypotheses, and to
facilitate empirical comparative study of the performance of
existing and future MBD implementations. In this paper, we
describe the syntax and the semantics of DIF as well as the
principles underlying its design. Several examples are used to
illustrate the use of DIF, with a particular focus on expressing
structure, state and constraints for various domains. We also
recommend several sources for creating a standardized MBD
benchmark set and discuss possible extensions in subsequent
versions of the format. We compare the proposed format to
related approaches used in some modeling languages.

Introduction

The field of Model-Based Diagnosis (MBD) is in need of
a repository of standardized models in order to test the
efficiency of algorithms and the adequacy and efficiency
of modeling representations. Algorithmic development in
other AI disciplines (SAT, CSP, automated planning) has
benefited from the existence of widely-accepted problem
representations and benchmark sets. Since MBD covers
a heterogeneous range of domains, ranging from discrete
circuit through continuous-valued value dynamical systems
like ecosystems, standardizing an MBD representation is a
challenging task. This paper defines an interchange format
for MBD, called the Diagnosis Interchange Format (DIF).
We show how this model covers a wide range of model
types, and compare DIF with languages for related purposes.

Our proposed language, DIF, can facilitate MBD research
and technology transfer from both the perspective of algo-
rithm development and of model representation.

From the algorithm development perspective, DIF can fa-
cilitate empirical comparative study of the performance of
existing and future MBD implementations. To date, the
lack of appropriate model- and algorithm-exchange formats
has hindered such empirical comparisons. In fact, there has
been no systematic study of the complexity of diagnosing
real-world problems, and few good benchmarks exist to aid
in such a study. Such a question is needed to answer the
question of whether MBD is computationally difficult for
the “average” real-world system; just worst-case results are

known, such as the task of finding a kernel diagnosis of min-
imal cardinality being ΠP

2 -complete (Eiter & Gottlob 1995).
Given a standard model representation, the scarcity of ex-
isting benchmarks can be supplemented by automatically-
generating models (Provan & Wang 2007) that have the
properties of real-world models and conform to the MBD
standard format.

From the representational perspective, DIF can provide
model-interchange standards, thus overcoming difficulties
in model sharing, which arise due to mutual incompatibil-
ity among the existing modeling representations, such as
the Java-Based Model Programming Language (Williams
& Nayak 1996), KOALA (Benazera, Travé-Massuyès, &
Dague 2002), HYBRID CC (Carlson & Gupta 1998), LYDIA

(Pietersma, Feldman, & van Gemund 2006).
We do not expect diagnostic reasoners to support the full

Diagnosis Interchange Format (DIF) specification; e.g., a
solver capable of reasoning in propositional logic would
not support hybrid constraints. Rather, a diagnostic solver
should specify the domain and constraint types it supports,
the DIF specification would provide a model classification
framework.

The rest of this paper is organized as follows. The next
section discusses related work. The third section describes
the syntax and semantics of DIF. Finally, we propose some
initial benchmark problems and discuss future work.

Related Work

We now summarize a selection of formats that have influ-
enced the design of DIF, and some model-generation tools
of practical consideration.

Interchange Formats

An interchange format provides a standardized, declarative
semantics, enabling the meaning of expressions in the rep-
resentation to be understood without appeal to an interpreter
for manipulating those expressions. Related formats in-
clude:

AI-ESTATE: The IEEE Standard for Artificial Intelligence
Exchange and Service Tie to All Test Environments
(Sheppard & Orlidge 1997) specifies observations, diag-
noses, and model attributes common to most reasoners. It
provides specialized model extensions in support of fault

tree and inference-based reasoners. The exchange format
uses the EXPRESS info modeling language. Future ver-
sions are planned to support Bayesian inference models
and XML data exchange.

AI-ESTATE is domain-independent, and is not limited to
automatic testing and diagnosis but provides interfaces to
manual testing. While being very comprehensive, the fo-
cus of AI-ESTATE is on interoperability as opposed to
benchmarking MBD algorithms.

DiagML: The Diagnostic Modeling Language (Gould et al.
2002) is used to facilitate exchange of test and diagnos-
tic data across applications developed by different ven-
dors. DiagML is an XML-based format. A DiagML file
provides sections for design, maintenance, test, and diag-
nostic data. The DiagML language focuses on traditional
fault diagnosis, incorporating test strategies and paramet-
ric data for executing the tests.

While DiagML is very suitable for specifying test pro-
cedures across heterogeneous environments it does not
provide support for modeling from first principles or
constraint-based normative behavior of the system under
test.

IDD: The European project “Integrated Design Process for
onboard Diagnosis” (Struss et al. 2002) defines a number
of XML-based model representations. Simulink numeri-
cal models provide structural and behavioral descriptions.
These are converted to qualitative models which are later
compiled to OBDD-like data structures to be used by an
ATMS-based reasoner.

DTIF: The IEEE Digital Test Interchange Format specifies
the information content and the data formats for the inter-
change of digital test program data between digital auto-
mated test program generators (DATPGs) and automatic
test equipment (ATE) for board-level printed circuit as-
semblies. This information can be broadly grouped into
data that defines the following: UUT Model, Stimulus and
Response, Fault Dictionary, and Probe.

Although this is an IEEE standard, it is restricted to digital
circuits and test-based diagnostic methodologies.

HSIF: The Hybrid Systems Interchange Format (Pinto et
al. 2006) is probably the most advanced and most com-
prehensive format in existence today. It covers arguably
the complete range of systems that one may want to diag-
nose. The main issue is extending this framework to make
it more diagnosis-specific.

This framework is focused more on modeling systems,
and less on interface specifications for implementing em-
bedded systems.

OSA-CBM: The Open-Systems Architecture for Condi-
tion-Based Maintenance interchange format1 was devel-
oped specifically for diagnosis and condition-based main-
tenance. In addition, it provides code-generators that can
be used for creating interfaces for distributed sensors, ac-
tuators, and other inference modules.

1Cf. http://osacbm.org/.

In comparison to HSIF, this framework is higher-level,
as it does not define semantics for equation types (e.g.,
dynamical equations), or of the transformations among
equation types. This framework is focused more on in-
terface specifications for implementing systems, and not
on the specifics of modeling.

KIF: The Knowledge Interchange Format is a comput-
er-oriented language for the interchange of knowledge
among disparate programs. It has declarative semantics;
it is logically comprehensive (i.e., it provides for the ex-
pression of arbitrary sentences in the first-order predicate
calculus); it provides for the representation of knowledge
about the representation of knowledge; it provides for the
representation of nonmonotonic reasoning rules; and it
provides for the definition of objects, functions, and re-
lations.

XMLBIF: The Bayesian Network XML Interchange For-
mat represents directed acyclic graphs that can be associ-
ated to conditional probability measures for discrete vari-
ables, with the possibility that decision and utility vari-
ables be present in the graph.

PSL: The Process Specification Language defines a vendor-
and representation-neutral formalism for manufacturing
processes. This may be important for representing life-
cycle analysis issues, and not just one-time model specifi-
cations. Process data is used throughout the life cycle of a
product, from early indications of manufacturing process
flagged during design, through process planning, valida-
tion, production scheduling and control. In addition, the
notion of process also underlies the entire manufacturing
cycle, coordinating the workflow within engineering and
shop floor manufacturing.

In building our proposal, we have considered a number of
specialized formats for representing data structures of inter-
est to MBD. These include BDDs, Petri Nets (Billington &
others 2003), Netlists and decomposable NNFs (Darwiche
2001). Furthermore, many digital circuits are expressed in
VHDL and Verilog, and we envision tools for translating
subsets of these two languages.

Model Auto-Generation

Given the scarcity of MBD models and the cost of hand-
constructing benchmark models, it is inevitable that auto-
mated model-generation techniques will be needed to pro-
vide appropriate model libraries. We now review two model
generation approaches, given that the suite of tools associ-
ated with DIF will probably include auto-generation capa-
bilities. The two approaches are: (a) a diagnosis generation
tool using random-graph methods and model component li-
braries, and (b) circuit generation tools.

Diagnosis Model Auto-Generation: Recently, a diagno-
sis generation methodology based on graphical model gener-
ators has been proposed (Provan 2006). This work is aimed
at auto-generating models for arbitrary systems, given a li-
brary of model components. The proposed methodology
first generates a graph representing the system topology, and

then assigns system functionality using the component li-
brary, inserting a component for each node in the graph de-
scribing the system topology.

This approach is significant in that it can capture arbitrary
systems. However, it is as accurate as (a) the topology gen-
eration mechanism and (b) the component library.

Random graph generators can effectively capture the
gross topology of complex systems, but much work remains
to more precisely capture detailed structure of particular do-
mains. For example, the actual structure of the WWW is
known to differ from the predictions of random graph mod-
els (Donato et al. 2004). In contrast, the practical applica-
tions and validity of the circuit-synthesis methods are more
heavily-researched than the applications and validity of the
random-graph generation approach; as a consequence, the
models that a circuit-synthesis method generates are prov-
ably closer to the real-world targets (circuits) than are the
models generated by random-graph generators are to their
real-world targets, such as the WWW (Donato et al. 2004).
However, many aspects of the circuit-generation algorithms
are so particular to the precise architectures of circuits that
they are not generalizable to other domains.

Circuit Benchmark Auto-Generation: A second group
of related work addresses automatic benchmark circuit gen-
eration for improving the design of programmable logic
architectures. A considerable literature exists for auto-
generating circuits, including (Stroobandt, Verplaetse, &
van Campenhout 1999; Kundarewich & Rose 2003; Holland
& Hauck 2006).

Benchmark circuit auto-generation originally was based
on applying a circuit generation rule, called Rent’s rule
(Landman & Russo 1971), but has since expanded to include
other methods, e.g., as surveyed in (Adya et al. 2003).

Most automatic circuit generation methods are based
on one of two methods, which we call equivalence-class
and Rent-based methods. The equivalence-class methods
(Ghosh & Brglez 1999) are based on perturbing a seed cir-
cuit to generate a circuit with similar overall structure but
different local connectivity. The Rent-based methods use a
power-law methodology, called Rent’s rule, to generate cir-
cuits (Christie & Stroobandt 2000).

In the following, we examine the combinational circuit
generation process, since this process has some proper-
ties that are potentially generalizable to any system model;
sequential circuit generation addresses issues that are re-
stricted to a specific class of temporal feedback systems with
distinguished clock inputs, features that are not present in
many other domains. Because of its greater generality, we
focus on the Rent-based combinational circuit methods.

Rent’s rule (Landman & Russo 1971), was originally de-
rived empirically, but has since been given mathematical un-
derpinnings. Rent’s rule describes the relationship between
the number of external signal connections to a logic block
(called the number of “pins”) and the number of logic gates
in the logic block.

Rent’s rule is given by T = tnξ , where (a) T is the num-
ber of input/output pins,2 (b) n is the number of gates, (c)

2In graph-theoretic terms, if we represent component i using

and the (internal) Rent exponent 0 ≤ ξ ≤ 1 represents
the level of placement optimization within a statistically ho-
mogeneous circuit, which is characterized by an intercon-
nection topology with an average node degree t (or in en-
gineering terms, t terminals per gate). From an engineer-
ing perspective, ξ = 1 corresponds to no placement opti-
mization, i.e., the circuit is interpreted as a random gate ar-
rangement. In actual circuits, the parameter ξ is dependent
on circuit-topology: microprocessors, gate-arrays, and high-
speed computers are characterized by Rent exponents of
ξ = 0.45, 0.5, and 0.63, respectively (Christie & Stroobandt
2000).

Several tools have been developed to generate benchmark
circuits based on Rent’s rule and other approaches. Exam-
ples of such tools are CIRC and GEN (Kundarewich &
Rose 2003). These tools can be integrated within the diag-
nostic model-generation framework described in this article.

Circuit generation algorithms have proven very useful for
applications like FPGA design; however, they have two
drawbacks when considered from the diagnostic model-
generation viewpoint. First, they are restricted to a spe-
cific domain, and focus on topology optimization, rather than
on the issues of fault isolation that are relevant to diagno-
sis benchmarks. As a consequence, these circuit generation
algorithms have parameters that are pre-tuned to particular
circuit classes; in contrast, a generic model generator must
have parameters that can be assigned to generate models
to approximate particular domains. It is important to note
that any such parameters are domain-dependent, and need
to be supplied by domain experts; in the absence of good
domain parameters, the generated models will approximate
real models with reasonable accuracy, the quality of which
can be significantly improved with the use of precise param-
eters. Second, the circuit generation algorithms must be ex-
tended to incorporate a functional description that describes
both normal and anomalous system behaviors.

Diagnosis Interchange Format

The DIF supports representation of models, observation vec-
tors and diagnoses. Modeling semantics is a topic of re-
search, and it is unlikely that our proposal would accommo-
date all the different approaches, ranging from hybrid sys-
tems with continuous time and state to static, discrete sys-
tems. In designing DIF, our main goals have been simplic-
ity, translatability from existing implementation formats and
extensibility.

Syntax and Semantics of DIF

As the standards described in this paper do not imply volu-
minous data according to current computing standards, and
all the formats expose an ample amount of structure, our
benchmark is encoded using the eXtensible Markup Lan-
guage (XML) (Bray et al. 2006). The latter choice greatly
simplifies the syntactical validation and representation, and

a node in a topology graph, then the degree ki of component i
corresponds to the set of terminals of component i in the circuit-
generation domain.

Subsystem

System

type : String

Component
Instantiation

Subsystem
Instantiation

Transition

id : String

Instantiation

type : String

Connection

Integer Variable

Variable TermFinite Domain

Domain

type : String

Boolean Domain Probability

Arithmetic
Function

Function
Term

Conjunction

Equivalence

Implication

Dusjunction

Negation

Constant Term

Prologue

properties : List

+

Next

only.

transitions

Allowed in

Component

type : String

Sentence

Literal

Term

Value

Variable

id : String

type : Enum

Bool Variable

Constraint

Real Variable

FDI Variable

ModelStructure

Temporal
Operator

1 1

*

1

1

11

1

1

1

1

*

1

2

1

1

1

1

1

1

1

1

1

*

*

1

*

*1

1

2

*

1 1

1

1

*

0,2

*

1

*

1

*

2

2

2

2

*

1

1

1 11

1

11

Figure 1: A visual representation of the DIF 1.0 model syntax (function classification, individual functions and some of the
variable attributes are omitted).

allows the user to borrow from the vast amount of XML tool-
ing. The DIF XML schema is visualized in Figure 1.

A DIF model has four sections: prologue, domains, struc-
ture, and components. The prologue describes the main
characteristics of the model, i.e., the types of the constraints,
fault-modeling, etc. The structure displays the model hierar-
chy that is essential for many of the MBD algorithms exist-
ing today. The domain description specifies symbolic values
for all the Finite Domain Integer (FDI) variables (Booleans
are treated as a special case of many-valued logic). Finally,
for each component a set of constraints and transitions are
specified. In particular, DIF supports constraints ranging
from logic to differential equations.

DIF supports any First-Order Logic (FOL) sentence as a
constraint, hence it provides for a large range of modeling
techniques. The variables in a component or a subsystem,
in addition to being Boolean or FDI can be in the real or
(infinite) integer domains. For the latter two variable types,
it is not necessary to specify domains. The framework is
suitable for both abductive and consistency-based diagnosis.

A portion of the DIF schema is shown in Figure 2
and its full specification is available for download from
http://fdir.org/dif/. Next, we provide some exam-
ples of how DIF can represent several classes of model.

A Combinatorial Circuit Example: Expressing structure
is important, both from the algorithmic and modeling per-

spective. A DIF model typically specifies a number of hier-
archical systems and a set of components. A system, then,
can instantiate an arbitrary number of subsystems and com-
ponents. Each system also defines a set of variables and how
these variables are mapped into the systems and components
it references. The use of hierarchy is best illustrated with the
circuit shown in Figure 3.

The circuit is a full adder, each gate of which is allowed
to fail without specifying faulty behavior. It consists of two
half adders and an OR gate. The XML element in Figure
4 represents the structure in DIF (the variable mappings are
omitted from the example for brevity). The top level system
instantiates two copies of the half adder subsystem and an
OR logic gate. The half adder uses an XOR and an AND
gate. Note, that in the actual model the top-level system has
some internal variables (f , p, and q) representing the wire
connections.

The structure of a model is, essentially, a rooted, edge-
labeled multidigraph G = 〈V, E〉, where the set of nodes V
consists of all systems and components and there is an edge
in E for each instantiation. One of the nodes is distinguished
as a root (top-level) system. Constructing an algorithm that
converts the hierarchical representation into a “flat” one is
straightforward, by recursively merging the nodes of G.

A component model is given as a set of multi-valued
propositional Wff over a set of variables V . A multi-valued
variable vi ∈ V takes a value from a finite domain, which is

...
<xs:element name=”model”>

<xs:complexType>
<xs:sequence>

<xs:element ref=”prologue”/>
<xs:element ref=”domains” minOccurs=”0”/>

...
<xs:element name=”domains”>

<xs:complexType>
<xs:sequence maxOccurs=”unbounded”>

<xs:element name=”domain”>
<xs:complexType>

<xs:sequence maxOccurs=”unbounded”>
<xs:element name=”value”

type=”xs:string”/>
</xs:sequence>
...

<xs:complexType name=”sentence”>
<xs:group ref=”sentence”/>

</xs:complexType>
<xs:complexType name=”transition”>

<xs:sequence maxOccurs=”unbounded”>
<xs:element name=”constraint”>

<xs:complexType>
<xs:group ref=”transition”/>

...
<xs:group name=”sentence”>

<xs:choice>
<xs:element name=”equiv ”>

<xs:complexType>
<xs:sequence>

<xs:group ref=”sentence”/>
<xs:group ref=”sentence”/>

</xs:sequence></xs:complexType>
...

Figure 2: Part of the DIF XML schema.

a set of symbols Di = {s1, s2, . . . , sm} with a 1-to-1 map-
ping to Z

+. All the domains of FDI variables have to be
explicitly specified in the second section of a DIF model. In
the combinatorial circuit used for illustration, all variables
are in the Boolean domain and the DIF definition of the lat-
ter is shown in Figure 5.

A positive multi-valued literal l+j is a Boolean function

l+j ≡ (vi = dk), where vi ∈ V and dk ∈ Di. A nega-

tive multi-valued literal l−j is defined in a similar fashion. A

multi-valued propositional Wff, then, is a formula over the
multi-valued literals l1, l2, . . . , ln, and the standard Boolean
connectives: ¬ (negation), ⇔ (equivalence), ⇒ (implica-
tion), ∧ (conjunction), and ∨ (disjunction).

Figure 6 shows the DIF specification of an XOR gate,
which is a part of the sample full adder circuit introduced
above. The component defines four variables: h, o, i1, and
i2, of which h is assumable. The single constraint specifies
the propositional Wff h ⇒ (o ⇔ (i1 ⇔ ¬i2)), the interpre-

i1

half adder

ci

i2
f

q

p

Σ

co

half adder

Figure 3: A full adder circuit.

<model>
...

<structure>
<system type=”fullAdder ”>

<subsysInst type=”halfAdder ” id=”ha1” />
<subsysInst type=”halfAdder ” id=”ha2” />
<compInstance type=”orGate” id=”orGate” />

</system>
<subsystem type=”halfAdder ”>

<compInst type=”xorGate” id=”xorGate” />
<compInst type=”andGate” id=”andGate” />

</subsystem>
</structure>

Figure 4: Structure describing element of a full adder circuit.

tation of which stipulates that the component health variable
h is true iff the output o is true only when the values of i1
and i2 are different. The model of the component is weak-
fault, i.e., if all the n components in a model are constrained
by expressions in the form hi ⇒ Fi, 1 ≤ i ≤ n, where hi is
an assumable and does not appear in any of the propositional
Wff Fj , 1 ≤ i ≤ n, then the Minimal Diagnosis Hypothesis
(de Kleer, Mackworth, & Reiter 1992) holds.

Reasoning about time and state is central to model-based
reasoning. Our discussion continues with some ways to rep-
resent dynamic characteristics of systems in DIF.

A Discrete Event System Model: DIF allows a compo-
nent to define temporal constraints. The only assumption is
that a diagnostic reasoner would maintain discrete time, and
at every time step, it would copy all the variables and all the
constraints for the current time instance.

A temporal constraint is a sentence in FOL that has vari-
ables from two instantiations of the system description in

<domains>
<booleanDomain type=”bool”>

<value default=”true”>true</value>
<value>false</value>

</booleanDomain>
</domains>

Figure 5: A DIF specification of the Boolean domain.

<component type=”xorGate”>
<var domain=”bool” id=”h” type=”health”/>
<var domain=”bool” id=”o”/>
<var domain=”bool” id=”i1”/>
<var domain=”bool” id=”i2”/>
<constraint>

<imply><lit id=”h”/>
<equiv><lit id=”o”/>

<equiv><lit id=”i1”/>
<not><lit id=”i2”/></not>

</equiv>
</equiv>

</imply>
</constraint>

</component>

Figure 6: A weak-fault model of an XOR logic gate.

time. The only difference between a temporal constraint
and a combinatorial constraint is that a temporal constraint
allows the use of “temporal operators”.

An example of such a temporal operator is © (next) (the
others include � (globally), ♦ (eventually)) with semantics
similar to the one in (Manna & Pnueli 1992). Note that ©
can only appear in front of a variable term, in which case
¬© x is equivalent to ©¬x.

Our next example clarifies the DIF temporal semantics
by discussing a model of a resettable pneumatic valve. The
transition diagram of this valve is shown in Figure 7.

stuck
closed

opened

failed reset

idle

stuck

idle stick closed

closeopen

reset

reset

idle

stick opened

idle

failed reset

closed

opened

Figure 7: A transition diagram of a resettable valve.

The XML element shown in Figure 8 represents one of the
possible transitions from Figure 7. It says that, given a pos-
itive assignment to the “reset” variable in the current in-
stance, and if the valve is stuck open, it will change its state
to closed when time progresses.

It is not possible to show all transitions of the valve in DIF
as the full model specifies a transition for every edge of the
graph shown in Figure 7. These constraints, however, are
very similar to the one we have discussed in this section.

Before we continue with an example having an ODE for
a constraint, it is worth noting that transitions are nothing
more than set of constraints, having a name and being ap-
plied by the reasoners progressively over time.

<transition id=”reset”>
<constraint><lit id=”c”>reset</lit></constraint>
<constraint>

<imply><lit id=”s”>stuckOpened</lit>
<next><lit id=”s”>closed</lit></next>

</imply>
</constraint>
<constraint>

<imply><lit id=”s”>stuckClosed</lit>
<next><lit id=”s”>opened</lit></next>

</imply>
</constraint>

</transition>

Figure 8: Valve transition from state “stuck closed” to
“open” upon reset.

A Continuous System: Consider a numeric model of the
primitive water clock, shown in Figure 9. The water level h
(which was used in ancient times for approximating the time
of the day) at time t is the solution of the ODE specified next
to the figure. It is possible to build a fault model that speci-
fies that the component is healthy if the value of h predicted

by the numerical solution of the ODE, ĥ, is within a certain

threshold δ, i.e., |h − ĥ| < δ.

dh
dt

= −k
√

h

h k = cAh

√

2g

Aw

f ⇔ (ĥ < h − δ) ∨ (ĥ > h + δ)

Figure 9: A set of hybrid constraints of a water clock fault
model.

The rest of the parameters in Figure 9 are as follows. Aw

and Ah are the cross-sectional areas of the water and the
hole, respectively, and c is a friction constant. The accelera-
tion due to gravity is denoted as g. The full model uses the

Boolean fault variable f and an observable variable ĥ in the
real domain.

The DIF constraint shown in Figure 10 specifies an ODE,
with t as the independent variable and both t and h in the
continuous domain (both have type “real” in the variable
declaration section of the full water clock model).

Having discussed DIF in specifying some models, we can
continue with the remaining two data structures which are
part of an MBD problem: observations and diagnoses.

Representation of Observations: In addition to models,
an MBD format should specify syntax and semantics for ob-
servation vectors (sensor data). The semantics of an obser-
vation vector in DIF is illustrated in Figure 11. An obser-

<equiv>
<fder><var id=”h” /><var id=”t” /></fder>
<uminus>

<prod>
<var id=”k” /><sqrt><var id=”h” /></sqrt>

</prod>
</uminus>

</equiv>

Figure 10: An ODE constraint for the water clock shown in
Figure 9.

vation vector in DIF is always a conjunction of variable as-
signments.

History Observation

seq : Integer

Value

id : String

Model *1

11 1 *

Figure 11: A visual representation of the DIF 1.0 observa-
tions syntax.

Figure 12 shows the DIF representation of a sample obser-
vation vector for the full-adder from Figure 3 (representing
the propositional Wff OBS2 = i1 ∧ i2 ∧ ci ∧ ¬Σ ∧ co).
An observation refers to a specific instant in time. For the
main MBD problem, a reasoner is supplied with a model in
DIF and a sequence of observations in time, and it computes
diagnoses, the format of which will be described later.

<obs seq=”2”>
<lit id=”i1”/><lit id=”i2”/><lit id=”ci”/>
<not><lit id=”sum”/></not><lit id=”carry”/>

</obs>

Figure 12: An observation of the full adder from Figure 3.

As the problem of finding a kernel diagnosis is known to
be ΠP

2 -complete, most MBD implementations employ a
heuristic based on the minimum number of failing compo-
nents, or smallest probability failure mass (the DIF model
language has a straightforward way for assigning probabili-
ties to variable values). Hence the goal of an MBD bench-
mark is to provide an observation that leads to a kernel diag-
nosis of minimum cardinality having the maximum number
of failing components. The latter problem is a topic on its
own with many applications in MBR.

Representation of Diagnoses: The last part of our spec-
ification concerns the diagnoses as computed by MBD im-
plementations. As both the observation and the diagnoses
are sets of variable assignments, their formats are very sim-
ilar. The class diagram for the DIF diagnosis representation
is shown in Figure 13.

Diagnosis

Fault Catalog

Model

Value

id : String

Observation

seq : Integer

1

1

*

1

*

1

1

1

*

Figure 13: A visual representation of the DIF 1.0 diagnoses
syntax.

A diagnosis file specifies zero or more diagnoses for some
or all of the time instances at which observations have been
performed. The observation of the full-adder (cf. Figure
3) from Figure 12 has been performed at time instance 2
according to its seq attribute. All kernel diagnoses of this
observation are shown in Figure 14.

<obs seq=”2”>
<diagnosis>

<not><lit id=”ha1.xorGate.h”/></not>
</diagnosis>
<diagnosis>

<not><lit id=”ha2.xorGate.h”/></not>
</diagnosis>

</obs>

Figure 14: A diagnosis of the full adder from Figure 3, given
the observation from Figure 12.

We use the dotted notation in the literal identifiers to specify
the subsystems in which the component resides. The two
possible kernel diagnoses shown in Figure 14 are each of
the two XOR gates of the full-adder being faulty.

MBD Benchmark

Advances in the MBD algorithms will quickly obsolete a
static set of benchmark problems, hence we see the main-
tenance of a benchmark suite as an ongoing effort. Pro-
viding a benchmark set is also technologically challenging.
We have compiled an initial set of benchmark problems and
published them on http://fdir.org/dif/.

Our initial benchmark proposal consists of three cate-
gories: (1) combinatorial circuits, (2) random models, and
(3) real-world systems. In addition to the models, we have
provided observation data as discussed in this paper. In some
cases diagnostic results are included as well.

The ISCAS-85 set of combinatorial circuits (Brglez & Fu-
jiwara 1985) has been used as the de facto benchmark in
MBD and we have translated it to DIF. In order to facilitate
hierarchical solvers, in addition to the traditional flat repre-
sentation, we have provided DIF versions of the reverse en-
gineered high-level ISCAS-85 circuits (Hansen, Yalcin, &
Hayes 1999).

For the random diagnosis problems, we have used a model
generator as described in the beginning of this paper. The

random problems have different numbers of components,
observable variables and connectivity.

Finally, we have anonymized some real-world models
of practical significance and added them to the benchmark
suite. A full description of the benchmark problems is not
possible due to the limitations in the paper length and is
available from the benchmark web site.

Conclusion

This article have proposed a Diagnosis Interchange Format
(DIF) intended to facilitate (a) exchange of models, com-
ponent libraries, sensor data (observation vectors) and diag-
noses in MBD, and (b) empirical comparative studies of the
performance of existing and future MBD algorithms.

In the article we have summarized the syntax and the se-
mantics of DIF, as well as the principles underlying its de-
sign. We argue that DIF is a compact representation for rep-
resenting diagnosis models. By using inheritance and spe-
cialization, we showed how a very broad modeling language
like DIF can be specialized to represent explicit models such
as digital circuits. This specialization decreases the model-
ing complexity and allows modelers to use DIF for fault-
diagnosis of Boolean circuits, for example, while not being
burdened with the language’s expressiveness outside the do-
main of propositional logic.

While DIF may be compact for representing a wide range
of systems, MBD employs a variety of representations al-
lowing trade-offs in time, space, and off-line time (i.e.,
knowledge compilation approaches). A future extension of
this standard would benefit from supporting compact com-
piled representations like NNF (Negation Normal Forms),
OBDD (Ordered Binary Decision Diagrams) and others.

Acknowledgments

This work has been supported by STW grant DES.7015 and
SFI grant 04/IN3/I524.

References

Adya, S. N.; Yildiz, M. C.; Markov, I. L.; Villarrubia, P. G.;
Parakh, P. N.; and Madden, P. H. 2003. Benchmarking for
large-scale placement and beyond. In Proc. ISPD’03, 95–
103.

Benazera, E.; Travé-Massuyès, L.; and Dague, P. 2002.
State tracking of uncertain hybrid concurrent systems. In
Proc. DX’02, 106–114.

Billington, J., et al. 2003. The Petri net markup language:
Concepts, technology, and tools.

Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.;
and Yergeau, F. 2006. Extensible markup language (XML)
1.0. Technical Report REC-xml-20060816, W3C.

Brglez, F., and Fujiwara, H. 1985. A neutral netlist of 10
combinational benchmark circuits and a target translator in
fortran. In Proc. ISCAS’85, 695–698.

Carlson, B., and Gupta, V. 1998. Hybrid cc with interval
constraints. In Proc. HSCC’98, 80–95.

Christie, P., and Stroobandt, D. 2000. The interpretation
and application of Rent’s rule. IEEE Trans. Very Large
Scale Integr. Syst. 8(6):639–648.

Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM 48(4):608–647.

de Kleer, J.; Mackworth, A.; and Reiter, R. 1992. Char-
acterizing diagnoses and systems. Artificial Intelligence
56(2-3):197–222.

Donato, D.; Laura, L.; Leonardi, S.; and Millozzi, S. 2004.
Simulating the webgraph: A comparative analysis of mod-
els. Computing in Science and Engineering 6(6):84–89.

Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Journal of the ACM 42(1):3–42.

Ghosh, D., and Brglez, F. 1999. Equivalence classes of cir-
cuit mutants for experimental design. In Proc. ISCAS’99,
432–435.

Gould, E.; Hartop, D.; Lee, E.; Neag, I. A.; and Wilson,
M. 2002. Diagml - an interoperability platform for test and
diagnostics software. In Proc. of IEEE AUTOTESTCON-
02, 597 – 607.

Hansen, M.; Yalcin, H.; and Hayes, J. 1999. Unveiling the
ISCAS-85 benchmarks: A case study in reverse engineer-
ing. IEEE Design & Test 16(3):72–80.

Holland, M., and Hauck, S. 2006. Improving perfor-
mance and robustness of domain-specific CPLDs. In Proc.
FPGA’06, 50–59.

Kundarewich, P. D., and Rose, J. 2003. Synthetic cir-
cuit generation using clustering and iteration. In Proc.
FPGA’03, 245–245.

Landman, B. S., and Russo, R. L. 1971. On pin versus
block relationship for partitions of logic circuits. IEEE
Trans. Computers 20(6):1469–1479.

Manna, Z., and Pnueli, A. 1992. The Temporal Logic of
Reactive and Concurrent Systems: Specification. Springer-
Verlag.

Pietersma, J.; Feldman, A.; and van Gemund, A. 2006.
Modeling and compilation aspects of fault diagnosis com-
plexity. In Proc. of IEEE AUTOTESTCON-06.

Pinto, A.; Carloni, L. P.; Passerone, R.; and Sangiovanni-
Vincentelli, A. 2006. Interchange formats for hybrid sys-
tems: Abstract semantics. In Proc. Hybrid Systems: Com-
putation and Control, 491–506.

Provan, G., and Wang, J. 2007. Automated benchmark
model generators for model-based diagnostic inference. In
Proc. IJCAI’07, 513–518.

Provan, G. 2006. Automated benchmark model generators
for model-based diagnostic inference. In Proc. DX’06, 99–
104.

Sheppard, J. W., and Orlidge, L. A. 1997. Artificial intelli-
gence exchange and service tie to all test environments (AI-
ESTATE) - a new standard for system diagnostics. In Proc.
of the IEEE International Test Conference, 1020–1029.

Stroobandt, D.; Verplaetse, P.; and van Campenhout, J.
1999. Towards synthetic benchmark circuits for evaluat-
ing timing-driven cad tools. In Proc. ISPD’99, 60–66.

Struss, P.; Rehfus, B.; Brignolo, R.; Cascio, F.; Console,
L.; Dague, P.; Dubois, P.; Dressler, P.; and Millet, D. 2002.
Model-based tools for the integration of design and diag-
nosis into a common process - a project report. In Proc.
DX’02.

Williams, B., and Nayak, P. P. 1996. A model-based
approach to reactive self-configuring systems. In Proc.
AAAI’96, 971–978.

