
Generating Manifestations of Max-Fault Min-Cardinality Diagnoses

Alexander Feldman1 and Gregory Provan2 and Arjan van Gemund1

1Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Mekelweg 4, 2628 CD, Delft, The Netherlands
Tel.: +31 15 2781935, Fax: +31 15 2786632, e-mail: {a.b.feldman,a.j.c.vangemund}@tudelft.nl

2University College Cork, Department of Computer Science, College Road, Cork, Ireland
Tel: +353 21 4901816, Fax: +353 21 4274390, e-mail: g.provan@cs.ucc.ie

Abstract

Computing test vectors that are optimized to isolate faults
is an important area of diagnostics. The literature has fo-
cused on test vectors for single-fault diagnoses. This arti-
cle generalizes this, addressing the problem of computing
Max-Fault Min-Cardinality (MFMC) observation vectors in
Model-Based Diagnosis (MBD), and proposing two algo-
rithms for solving it. An MFMC observation vector is an
observation that, for a given system description, results in
the maximum number of faults in the minimum cardinality
diagnosis. Computing MFMC observation vectors has appli-
cation in testability analysis, MBD benchmarking, optimal
sensor placement and other areas of model-based reasoning.
We discuss the high computational complexity of the MFMC
problem and introduce stochastic methods to reduce the so-
lution complexity. The first method for computing MFMC is
based on importance sampling while the second one is based
on simulated annealing. Both algorithms lead to significant
speed-up compared to exhaustive search and perform best for
different classes of system descriptions. The algorithms de-
scribed in this paper have been implemented and tested on a
benchmark of combinatorial circuits.

Introduction

The problem of computing minimum cardinality diagnoses,
given an observation and a system description, is central
to Model-Based Diagnosis. Consider the inverse problem
of computing an observation which distinguishes a specific
number of faulty components. Computing observations that
distinguish a single failing component is studied by Auto-
matic Test Pattern Generation (ATPG) and dates back to
(Roth 1966). The goal of ATPG is, then, to compute a se-
quence of test vectors that can distinguish every possible sin-
gle fault in a device.

Single-fault ATPG has been extended to finding observa-
tion vectors leading to double faults (Hughes 1988) and to
multiple faults (Kubiak & Fuchs 1991). All of these ap-
proaches have several drawbacks, including: (1) they are in-
herently suboptimal, i.e., they do not answer the question of
what is the maximum number of faults distinguishable by
a single test vector, (2) they suffer from very high compu-
tational complexity, and (3) they severely limit the class of
system abstractions by using various simulation techniques.

Few papers address algorithms computing observation
vectors that distinguish the maximum number of failing com-

ponents in a system, e.g., (Abramovici 1981). One can
devise a class of more general algorithms for this, based
on techniques from MBD and abductive reasoning. This
paper formalizes the problem of finding Max-Fault Min-
Cardinality (MFMC) observation vectors and proposes two
algorithms for solving it. These two methods are very effi-
cient, given the existence of a fast MBD engine.

One of the advantages of the algorithms in this paper
over the related k-fault ATPG algorithms is that they do
not impose any limitations on the model (e.g., they do not
require stuck-at modes or unlimited observability). This
makes them applicable not only to testing but to a wider
range of Model-Based Reasoning problems. The MFMC
algorithms can be used for MBD benchmarking (Provan &
Wang 2007), optimal sensor placement (Console, Picardi, &
Ribaudo 2000) and other applications.

A summary of our contributions follows. This paper in-
troduces the MFMC problem and two algorithms for com-
puting MFMC observation vectors. The first one is based
on importance sampling and the second one on simulated
annealing. The two algorithms are empirically analyzed on
a number of diagnostic models. Furthermore, we discover
some properties of the MFMC search and reason about its
computational complexity.

The rest of this paper is organized as follows. The section
which comes after this introduction defines the basic MFMC
framework. It is followed by a short discussion on some
complexity issues. The fourth section suggests algorithms
for solving the MFMC problem. Finally, we evaluate the
empirical performance of the algorithms.

Preliminaries

The discussion starts by formalizing some basic notions in
MBD, extending the notions in (de Kleer, Mackworth, & Re-
iter 1992). A model of an artifact is represented as a propo-
sitional Wff over some set of variables V . Discerning a
subset of them as assumable or observable gives us a diag-
nostic system.

Definition 1 (Diagnostic System). A diagnostic system DS
is defined as the triple DS = 〈SD,COMPS,OBS〉, where
SD is a propositional theory describing the behavior of the
system, COMPS is a set of assumable variables in SD, and
OBS is a set of some observable variables in SD.



Although it is not strictly necessary, throughout this paper
we will assume that OBS ∩ COMPS = ∅.

A Running Example

The simple Boolean circuit shown in Figure 1 is used to il-
lustrate the notions in this papers and the workings of the
algorithms we propose. The 2-to-4 line demultiplexer con-
sists of four Boolean inverters and four and-gates.

b

a

i
o1

o2

o3

o4

I2

I3 I4

A2

A3

A4

I1

A1

p q

sr

Figure 1: A 2-to-4 line demultiplexer.

The expression h ⇒ (o ⇔ ¬i) models an inverter, where
the variables i, o, and h represent input, output and health
respectively. Similarly, an and-gate is modeled as h⇒ (o⇔
i1 ∧ i2 ∧ i3). These propositional formulae are copied for
each gate in Figure 1 and their variables renamed in such
a way as to properly connect the circuit and disambiguate
the assumables, thus generating the following propositional
formula for SD:

SD =







































I1 ⇒ (a⇔ ¬p)
I2 ⇒ (p⇔ ¬q)
I3 ⇒ (b⇔ ¬r)
I4 ⇒ (r ⇔ ¬s)
A1 ⇒ (o1 ⇔ i ∧ p ∧ r)
A2 ⇒ (o2 ⇔ i ∧ r ∧ q)
A3 ⇒ (o3 ⇔ i ∧ p ∧ s)
A4 ⇒ (o4 ⇔ i ∧ s ∧ q)

The set of component (assumable) variables is COMPS =
{I1, . . . , I4, A1, . . . , A4}. The set of observable variables is
OBS = {i, a, b, o1, . . . , o4}.

Diagnostic Framework

The traditional query in MBD results in finding terms of as-
sumable variables which are explanations for the system de-
scription and an observation. The first definition of diagno-
sis uses a set notation.

Definition 2 (Diagnosis). A diagnosis for the system DS =
〈SD,COMPS,OBS〉, given an observation term α over

variables in OBS, is a set D ⊆ COMPS such that:

SD ∧ α ∧

[

∧

c∈D

¬hc

]

∧





∧

c∈(COMPS\D)

hc



 6|=⊥

Under lex parsimoniae we are interested in computing those
diagnoses that are not subsumed by other diagnoses of SD∧
α.

Definition 3 (Minimal Diagnosis). A diagnosis D is mini-
mal iff no proper subset D′ ⊂ D exists, such that D′ is also
a diagnosis.

Throughout this paper we interchangeably use a proposi-
tional notation for expressing diagnoses. In this case we
simply construct a conjunction of literals, each literal hav-
ing a negative sign if its respective variable is in D and a
positive sign otherwise. Consider the example from Fig-
ure 1 and an observation α = a ∧ b ∧ i ∧ ¬o4. In this
case D1 = {I1, I2} is a diagnosis and D2 = {I1} is a
minimal diagnosis (there are four more minimal diagnoses
for SD ∧ α). Alternatively, instead of D1 we may write
D′

1 = ¬I1 ∧ ¬I2 ∧ I3 ∧ I4 ∧A1 ∧ . . . ∧A4.
The cardinality of a diagnosisD is the size ofD and is de-

noted as |D|. It represents the number of faulty components
in COMPS given SD and α. Next to computing minimal
diagnoses, it is of interest to MBD to compute some or all
minimal-cardinality diagnoses, given a diagnostic problem.

Definition 4 (Minimal-Cardinality Diagnosis). A diagnosis
D is a minimal-cardinality diagnosis if it is a minimal diag-
nosis and no other diagnosis D′ exists such that |D| < |D′|.

The cardinality of a minimal-cardinality diagnosis computed
from a system description SD and an observation α is de-
noted as MinCard(SD ∧ α). For our example and the ob-
servation α = a∧b∧i∧¬o4, it follows that MinCard (SD∧
α) = 1. Note that in this case all minimal diagnoses are also
minimal-cardinality diagnoses.

There are minimal diagnoses which are not minimal-
cardinality diagnoses. Let us consider, for example, the di-
agnostic system DS = 〈SD,COMPS,OBS〉, where SD =
(h1 ∧ h2 ∧ x) ∨ (h4 ∧ x), COMPS = {h1, h2, h3, h4},
OBS = {x}, and an observation α = x. In this case, D1 =
{h1, h2, h3} is a non-minimal diagnosis, D2 = {h1, h2}
and D3 = {h4} are minimal diagnoses, but only D3 is a
minimal-cardinality diagnosis.

Definition 5 (MFMC Observation). Given a system descrip-
tion SD, a Max-Fault Min-Cardinality (MFMC) observa-
tion is an instantiation α over variables in OBS such that
MinCard(SD ∧ α) is maximized.

Throughout this paper we will use the term MFMC diagno-
sis, that is any of the minimal-cardinality diagnoses D for
which α is an MFMC observation. The cardinality of the
MFMC diagnosis of a diagnostic system DS is denoted as
MaxCard(DS).

The MBD literature often considers a class of theories that
define normative behavior of their components only, i.e.,
models which specify no fault-modes. These models are
sometimes referred to as weak-fault models, or ignorance of
abnormal behavior (de Kleer, Mackworth, & Reiter 1992),
or, in our case, implicit fault systems.



Definition 6 (Implicit Fault System). A diagnostic system
DS belongs to the class IFS iff SD is in the form (h1 ⇒
F1) ∧ . . . ∧ (hn ⇒ Fn) such that for 1 ≤ i, j ≤ n, {hi} ⊆
COMPS, Fj ∈Wff , and none of hi appears in Fj .

Traditionally diagnosis and minimal diagnosis are defined
only in the context of implicit fault systems. Note that a
diagnosis assigns values to all variables in COMPS.

A stronger notion of diagnosis exists for systems that im-
pose no restriction on the propositional theory (e.g., strong-
fault models). To introduce these types of diagnoses we will
borrow the next definition from (Darwiche 1998).

Definition 7 (Consequence). Given a diagnostic system
DS = 〈SD,OBS,COMPS〉, and an observation α, the con-
sequence of SD∧α, is a sentence Cons(SD∧ α), such that
all its literals are in COMPS, SD∧α |= Cons(SD∧α) and
for any term β, SD ∧ α |= β if Cons(SD ∧ α) |= β.

The next definition gives us another way to represent diag-
nosis and a more expressive explanation of SD ∧ α.

Definition 8 (Partial Diagnosis). Given a diagnostic system
DS = 〈SD,OBS,COMPS〉, and an observation α, a partial
diagnosis ω is defined as a term over the set of assumable
variables h ∈ COMPS, such that ω |= Cons(SD ∧ α).

By distinguishing these partial diagnoses only, which are not
contained in other implicants of Cons(SD∧α), we get par-
tial diagnoses which are minimal under subsumption. Com-
puting these diagnoses, however, is strictly more difficult
than computing the set of all minimal diagnoses.

Definition 9 (Kernel Diagnosis). A partial diagnosis ω is a
kernel diagnosis iff no partial diagnosis ω′ exists, such that
ω′ is the conjunction of a proper subset of the literals in ω.

Consider again the example from Figure 1 and an observa-
tion α = a ∧ b ∧ i ∧ ¬o4. In this case ω1 = ¬I1 ∧ ¬I2 is a
partial diagnosis and ω2 = ¬I1 is a kernel diagnosis. These
are similar to the results for diagnosis and minimal diagno-
sis, but consider changing the models of all inverters in SD
from h ⇒ (o ⇔ ¬i) to [h⇒ (o⇔ ¬i)] ∧ (¬h ⇒ ¬o).
In the latter scenario, diagnoses and minimal diagnoses are
not defined and ω1 = I1 ∧ ¬I2 ∧ I3 is a kernel diagnosis.
Note that, for example, ω2 = ¬I1 ∧ . . . ∧ ¬I4 is not a par-
tial diagnosis even though it contains a superset of the faulty
components in ω1.

The cardinality of a partial diagnosis ω, denoted as
Card(ω), is defined as the number of negative literals in ω.
In the above example, Card(ω1) = 1. In a similar way
we derive minimal-cardinality partial diagnosis and MFMC
partial diagnoses. It can be shown, that if SD ∈ IFS the
MFMC cardinalities would be the same for both kernel and
minimal diagnoses.

Our methods for computing MFMC observation vectors
rely on a diagnostic oracle. This oracle is supplied with a
system description SD and a candidate observation α. De-
pending on the implementation of this oracle, our algorithms
will compute MFMC observation vectors for either minimal
diagnoses or partial diagnoses. For the rest of this paper,
when it is clear from the context or from the model, we will
drop the qualification of the diagnosis type.

Before we proceed with the algorithmic sections, we can
truncate the search space for MFMC observation vectors by
realizing that, for finding MaxCard(DS), it is necessary to
instantiate all observable variables in SD.

Proposition 1 (Observation Monotonicity). Given that SD
is a system description and α and β are two observations
such that α ⊇ β then it holds that MinCard(SD ∧ α) ≥
MinCard(SD ∧ β).

Proof. The proof comes directly from the definitions of di-
agnosis. We construct a system of Boolean equations B in
the following manner. First, the propositional Wff in SD is
converted to a Boolean equation in a straightforward manner
and the latter is added to B. Second, for each literal li ∈ α,
an equation of the form li = 1 or li = 0 (depending on
the polarity of li) is appended to B. A system of Boolean
equations B′ is constructed from SD and β in an analogous
way. The solutions ofB andB′ are the implicants of SD∧α
and SD ∧ β, respectively. Observe, that, due to the fact that
α ⊇ β, the equations in B′ are a superset of these in B and
both are over the same set of variables. But S(B′) ≤ S(B),
where S(X) denotes the number of solutions in a system
X . The above holds also when the solutions of B and B′

are ordered according to their cardinality. Hence, if a diag-
nosis with a cardinality smaller than the smallest cardinality
diagnosis in B′ exists, it is in B.

Next we discuss some computational complexity properties
of generating MFMC observation vectors.

Complexity of the MFMC Problem

We have already seen that there is dependency between the
observability of a model and the cardinality of the MFMC
diagnosis (the average complexity of the problem). Before
we continue our reasoning with the worst-case complexity
of MFMC, we motivate the need of MFMC by noting that
building diagnosable systems is expensive in terms of sen-
sors (observables).

Assume that we have a system with k binary-valued sen-
sors and n components, and that each component can be
either faulty or healthy, i.e., the fault description does not
define failure modes. We define a failure as an instantiation
of fault modes, and a test as an instantiation of sensors.

There are 2k test-vector settings (the test space Γ), and
2n − 1 possible fault combinations (the failure space Ω).

The ability to isolate all fault combinations (in which case
the system is diagnosable) is typically impossible for practi-
cal reasons. In most cases, for a large system, it is too expen-
sive to provide enough sensors to ensure full diagnosability.
The following theorem defines the number of sensors needed
to isolate q failures:

Theorem 1. The minimum number of sensors needed to iso-
late q failures is given by ⌈log2(q + 1)⌉.

Proof. If we have q binary sensors, then there are 2q distinct
sensor signatures, of which {0, ..., 0} is the nominal signa-
ture. Hence 2q − 1 signatures denote distinguished failures.
This can be rearranged simply as follows:



q sensors  2q − 1 distinguished failures

q + 1 sensors  2q distinguished failures

⌈log2(q + 1)⌉ sensors  q distinguished failures

As a consequence, we must operate in a world where
some failures are indistinguishable given Γ (they mask each
other). In this article we choose to focus on the probabilis-
tically most-likely failures, assuming that we have a proba-
bility distribution over the individual faults and all faults are
mutually independent.

To complete our theoretical notions, we reason about the
worst-case complexity of the MFMC problem. We can show
that solving a simplified restriction of the MFMC problem is
NP-complete.

Theorem 2 (Complexity of Restricted MFMC). Given a di-
agnostic model DS = 〈SD,OBS,COMPS〉 and a diagno-
sis D, it is NP-complete to determine a manifestation for the
observation α.

This theorem can be proven by observing that it is just the
dual to the problem of determining the existence of a diag-
nosis D given the observation α (Theorem 4.7 of (Bylander
et al. 1991).)

Further, the complexity of the MFMC problem is likely
to be higher than that of isolating multiple-fault diagnoses
(which is NP-complete (Bylander et al. 1991; Friedrich,
Gottlob, & Nejdl 1990)), or that of computing a minimum-
size test set to isolate all single stuck-at faults in electronic
circuits (which is NP-complete (Krishnamurthy & Akers
1984)). With regard to Multiple-Fault Diagnosis (MFD),
MFMC introduces an optimization task that makes multi-
ple calls to an MFD oracle, which is clearly harder. With
regard to testability analysis, MFMC addresses the multiple-
fault case, and is applicable to arbitrary models, and not just
stuck-at circuit models.

It is also likely that approximating MFMC within a con-
stant factor is intractable. Approximating the single-fault
minimum-size test set within a factor δ > 1 of optimality is
NP-hard (Krishnamurthy & Akers 1984).

As a consequence of intractability and other practical is-
sues, such as dealing with failures which are indistinguish-
able (they mask each other), we focus on the probabilisti-
cally most-likely failures, assuming that we have a proba-
bility distribution over the individual faults and all faults are
mutually independent.

Algorithms for Computing MFMC

In this section we discuss algorithms for computing MFMC.
The first one is based on exhaustive search, hence it is suit-
able for understanding the basics of the MFMC computa-
tion only. The second algorithm borrows from Importance
Sampling (IS) (Yuan & Druzdzel 2006) to skip over health
assignment leading to faults of low cardinality. Finally, we
suggest a simulated annealing algorithm for generation of
MFMC.

A Naı̈ve Brute-Force Algorithm

Obviously the model of the 2-to-4 line demultiplexer be-
longs to IFS. An algorithm which finds such an observation
by trying all possible instantiation of the observable vari-
ables is shown in Algorithm 1.

Algorithm 1 An exhaustive search algorithm for generation
of MFMC observation vectors.

1: function NAÏVEMFMC(SD, OBS) returns a term

inputs: SD, a propositional theory
OBS, a set of observable variables

local variables: α, ω,R, terms
M , an integer, initially 0

2: for all α← INSTANTIATE(OBS) do
3: ω ← FINDMCDIAG(SD ∧ α)
4: if M < COUNTFAULTS(ω) then
5: R← α
6: M ← COUNTFAULTS(ω)
7: end if
8: end for
9: return R

10: end function

The outer loop of Algorithm 1 tries all the 2|OBS| instantia-
tions of the variables in OBS. For each possible instantiation
α it finds the minimal cardinality diagnosis by issuing a call
to the FINDMCDIAG subroutine. The observation leading
to a diagnosis with a maximum number of faults (in this ex-
ample COUNTFAULTS simply counts the number of negative
assumable literals in ω) is preserved as a result.

Any method for computing a diagnosis can be used as
an implementation of FINDMCDIAG and various methods
like compilation (Darwiche 2001) or heuristics and conflict
exploitation (Williams & Ragno 2004) can be used to speed-
up this function.

For the circuit shown in Figure 1, Algorithm 1 exhaus-
tively generates 128 instantiations of OBS. For example,
consider the arbitrary assignment α = ¬a ∧ ¬b ∧ i ∧ ¬o1 ∧
. . . ∧ ¬o4. Clearly, the only minimal-cardinality diagnosis
of SD ∧ α is ω = ¬A1, and Card(ω) = 1.

For the example demultiplexer, MaxCard(SD) = 4 and
there is a total of 4 observation vectors that can discern
minimal-cardinality diagnosis of 4 faults. One of these
max-fault min-cardinality observation vectors is αmfmc =
¬a∧¬b∧¬i∧ o1 ∧ . . .∧ o4. Interestingly, from all the 128
possibilities, there are 8, 40, 53, and 23 observation vectors
leading to a nominal, single-fault, double-fault and triple-
fault diagnosis respectively.

Computing MFMC Approximations through
Importance Sampling

Our IS algorithm is based on a weighted approach and works
for a restricted set of system descriptions. Furthermore,
the algorithm uses an extension to DS, a valuation function
Pr : COMPS → [0, 1]. In practice, Pr assigns a priori
probabilities to the system failure modes.

We assign an a priori valuation to an assignment α us-
ing Pr(α) = Πx∈α∪COMPSPr(x), which corresponds to



assuming that all variables in SD are conditionally indepen-
dent.

Consider systems that model the faulty behavior of their
components. For some of them, it is possible to partition
the set of observable variables OBS into two subsets IN and
OUT (denoting input and output variables respectively), and
after giving values to IN and COMPS, to use a reasoning al-
gorithm (e.g., unit-propagation) to find a unique assignment
to the values in OUT.

Definition 10 (Explicit Fault System). Given a system DS
and a partitioning OBS = IN∪OUT, DS ∈ EFS if for any
instantiation φ of all variables in IN∪COMPS, it holds that
there is exactly one term ψ such that φ |= SD ∧ ψ and ψ is
an instantiation of all variables in OUT.

The above restriction on the class of the propositional mod-
els allows us to introduce the algorithm which follows.

Algorithm 2 An algorithm for computing an MFMC ap-
proximations by using Importance Sampling.

1: function ISOBS(DS, IN, Pr , Pr∗) returns a term

inputs: DS = 〈SD,COMPS,OBS〉, a diag. system
IN, a set of variables, IN ⊆ OBS
Pr , a valuation function
Pr∗, a biasing pdf

parameters: S#, integer, number of samples
local variables: i, o, h, ω,R, terms

M, s, integers, initially 0

2: while s < S# do
3: 〈h, i〉 ← INSTANTIATE(COMPS, IN,Pr ,Pr∗)
4: o← PROPAGATE(SD ∧ i ∧ h)
5: ω ← FINDMCDIAG(SD ∧ i ∧ o)
6: if M < COUNTFAULTS(ω) then
7: R← i ∧ o
8: M ← COUNTFAULTS(ω)
9: end if

10: s← s+ 1
11: end while
12: return R
13: end function

Algorithm 2 uses simulation to compute a subset of all
(physically) possible states of a system. A biasing proba-
bility density function (pdf) is used to increase the proba-
bility of a sample being consistent with a higher number of
faults. For each of the S# samples over the input values i,
the outputs o are computed and the minimal diagnosis con-
sistent with i ∧ o is computed. The observation which leads
to a maximum number of faults is preserved throughout the
sampling process and returned at the end of the procedure.

We discuss the implementation of the INSTANTIATE func-
tion which determines the quality of the observation vectors
and the performance of the algorithm. Assuming equal prob-
abilities for the input variables, it implements the function
given next for assigning values to the variable set supplied
as an argument.

P (x = True) =

{

k [1− Pr(x)] : x ∈ COMPS
0.5 : x ∈ OBS

The above function uses a skewing coefficient k to scale the
probability of an assumable variable being instantiated as
faulty. In general, this coefficient depends on the model and
we will observe its effect in the experimentation section.

The implementation of the PROPAGATE subroutine is
straightforward. We suggest the use of a Binary Constraint
Propagation (BCP) method which can efficiently derive a
satisfying assignment for the output variables. The auxiliary
function GETOBS is used to discern these literals in a model
of SD which instantiate observable variables.

Algorithm 2 computes minimal cardinality diagnosis by
issuing a call to the FINDMCDIAG subroutine which is the
same as in Algorithm 1. The observation leading to a di-
agnosis with a maximum number of faults (in this example
COUNTFAULTS simply counts the number of negative as-
sumable literals in ω) is preserved as a result. The number of
calls to the potentially most expensive subroutine FINDM-

CDIAG decreases from 2|OBS| (in the case of an exhaustive
search) to S#, where S# is generally low.

To illustrate the workings of Algorithm 2 on the 2-to-4
line demultiplexer we have introduced in the running exam-
ple, it is necessary to change the system description used by
the exhaustive search algorithm. The reason for this is that
due to the weak-fault model the propagation routine would
not be able to derive the values of the output variables given
all inputs and health. In order to fix this, instead of one we
use two assumable variables per logic-gate f0 and f1 to de-
note “stuck-at-zero” and “stuck-at-one” respectively.

The new formula for modeling an inverter is (f0 ⇒ ¬o)∧
(f1 ⇒ o)∧ (¬f0 ∧ ¬f1 ⇒ (¬i⇔ o))∧ (¬fo ∨ ¬f1). Each
of the and-gates is represented as (f0 ⇒ ¬o) ∧ (f1 ⇒ o) ∧
(¬f0 ∧ ¬f1 ⇒ (i1 ∧ i2 ∧ i3 ⇔ o)) ∧ (¬fo ∨ ¬f1). Again,
we have to rename the variables for each gates, receiving a
system containing eight Boolean equations. For brevity, we
will omit the actual system description from this paper.

In running Algorithm 2 on the demultiplexer circuit, we
assign the set of inputs IN = {a, b, i}, the set of output vari-
ables OUT = {o1, o2, o3, o4}, the Pdf Pr(f0 = True) =
Pr(f1 = True) = 0.01 and k = 25. The number of sam-
ples S# has been set to 25.

For the demultiplexer circuit, Algorithm 2 works as fol-
lows. First it draws random values with equal probabili-
ties for the input variables a, b and i. Then it draws val-
ues for the “stuck-at-zero” and “stuck-at-one” assumables
with probability 0.25. After propagation, the values for
the output variables o1, . . . , o4 are computed. At the end,
from all samples the observation consistent with minimal-
cardinality diagnosis of maximum number of faults is cho-
sen. For this example run, let this observation be αis =
a∧¬b∧¬i∧ o1 ∧¬o2 ∧ o3 ∧ o4. As the reader can see, this
is consistent with a minimal cardinality triple-fault diagno-
sis ωis =

(

A1 ≡ F 1
)

∧
(

A3 ≡ F 1
)

∧
(

A4 ≡ F 1
)

, where the

proposition An ≡ F 1 denotes an and-gate “stuck-at-one”.
The received observation leads to a diagnosis of acceptable
quality, but the sampling continues until S# = 25. A higher
number of samples increases the probability of finding an
observation leading to a quadruple fault which is the opti-
mum for this example.



A Simulated Annealing Algorithm

Algorithm 3 has no restrictions on the theories for which
it can compute MFMC approximations. The technique it
employs is simulated annealing (Rutenbar 1989).

Algorithm 3 A simulated annealing algorithm for genera-
tion of MC observation vectors of multiple faults.

1: function MCHILLCLIMB(SD, OBS) returns a term

inputs: SD, propositional theory
OBS, set of observable variables

parameters: Tmin, real, “cool-off” temperature
Tmax, real, starting temperature
N , integer, number of tries
r, real, decay rate

local variables: vc, vn, terms
t, j,∆E, integers
T , real, current temperature

2: t← 0
3: repeat
4: vc ← INSTANTIATERANDOM(OBS)
5: j ← 0
6: repeat
7: T = Tmaxe

−jr

8: for all vn ← FLIPOBSERVABLE(vc) do
9: ∆E ← f(SD ∧ vn)− f(SD ∧ vc)

10: if ∆E > 0 then ⊲ Better MFMC?
11: vc ← vn ⊲ Accept the move.
12: else ⊲ Consider going downhill.

13: if RAND() < eT−1∆E then
14: vc ← vn

15: end if
16: end if
17: end for
18: j ← j + 1
19: until T < Tmin

20: t← t+ 1 ⊲ Number of attempts.
21: until t = N
22: return vc

23: end function

Algorithm 3 performs a maximum number of N indepen-
dent attempts, each one starting from a random observation
vector. These random observations are returned by INSTAN-
TIATERANDOM, which assigns with equal probability True

or False to each observable. As we will see in the ex-
perimentation section, a random observation vector is most
likely to lead to a diagnosis of cardinalityM/2, where M is
the number of faults in the MFMC diagnosis.

The algorithm manipulates the initial random observation
in an attempt of reaching a good optimum. The manipula-
tion of the observation vector, aiming at “hill climbing” is
performed by the FLIPOBSERVABLE subroutine. The idea
is to try “flipping” variables in the observation vector until
a “flip” leads to an improvement in the fault cardinality. In
some of the cases, however, “flipping” the value of an ob-
servable will lead to a decrease in the associated number of
faults. In these cases Algorithm 3 considers accepting the

“worse” observation in its current state vc with some prob-
ability depending on the current temperature T . This is to
allow the search to “escape”, if stuck in a local optimum.

The probability of accepting a state vn which is worse
than the current one in vc, defines the process of “cooling”,
which gives the name of Algorithm 3. The temperature T ,
which starts from Tmax and decreases gradually to Tmin, re-
sults in such “worse” states being accepted with higher prob-
ability in the beginning of each iteration and decreasing the
likelihood of such “flips” towards the end of the search, i.e.,
when the search “freezes”.

The “value flips” are repeated until the current observa-
tion in vc becomes consistent with a minimal-diagnosis fault
of improved cardinality, computed by the evaluation func-
tion f . The implementation of f returns the number of
faults in the minimal cardinality diagnosis consistent with
SD ∧ α and is the same as in Algorithm 3. In particular it
calls COUNTFAULTS and FINDMCCARD.

The parameters of the simulated annealing algorithm
which affect its performance and the quality of the MFMC
observation vectors are Tmin, Tmax, N , and r. These are the
starting and “cool-off” temperatures, the number of “tries”
and the decay rate, respectively. Similar to (Spears 1996),

we will choose r = (|OBS| ∗N)
−1

. The rationale behind
this choice of r is that we would like a “faster” decaying
when the problem size or the number of random restarts in-
crease. Increasing the temperature range Tmax − Tmin or
reducing the decay rate r would allow more thorough search
to be performed from each randomly chosen position.

The RAND function returns a normally distributed ran-
dom number x such that 0 ≤ x < 1. In the beginning of the
decaying process T is close to 1, hence the search is stochas-
tic, hence more likely to escape local optima. In the cooling
process the search becomes like an ordinary hill-climbing.

Experimental Results

This section presents an empirical analysis of our algo-
rithms.

Implementation Notes and Test Set Description

Our implementation is approximately 1000 lines of C code
(excluding the diagnosis computation) and is a part of the
LYDIA1 package. Two variants of the critical subrou-
tine for finding a minimal-cardinality diagnosis have been
used. These utilize conflict-based search (Williams & Ragno
2004) and exploitation of structure (Feldman & van Gemund
2006). Despite the above state-of-the-art implementations,
the diagnosis search routine constrains the efficiency of the
MFMC observation vector search, which is not surprising
knowing that we are trying to diagnose circuits with obser-
vations consistent with multiple-faults of large cardinality.

Table 1 summarizes the benchmark we have used for test-
ing of our algorithms. All the models are derived from the
74XXX family of arithmetic circuits.

1This package for model-based fault diagnosis can be down-
loaded from http://fdir.org/lydia/.



Name Description Vw Hw O Cw Cs

74180 9-bit parity check 38 14 12 48 90
74139 2-to-4 decoders 42 18 14 52 106
74153 4-to-1 selector 44 16 14 62 110
74182 4-bit CLA 47 19 14 75 132
74283 4-bit adder 89 40 14 130 250
74L85 4-bit comparator 93 41 14 134 257
74181 4-bit ALU 138 62 22 216 402

Table 1: Basic characteristics of the fault models from the
74XXX circuits family.

Some of the basic properties of the models we have used for
benchmarking are shown in Table 1. For the models belong-
ing to IFS, Vw,Hw, andO are the total number of variables,
the number of assumables |COMPS| and the number of ob-
servables |OBS|, respectively. For the strong-fault models,
used in the testing of Algorithm 2, the number of assum-
ables is Hs = 2Hw, the number of observable variables is
the same as in the weak-fault models and the total number of
variables is Vs = Vw +Hw. Columns Cw and Cs show the
number of clauses in the CNF representations of the weak
and strong system descriptions, respectively.

All the experiments described in this paper are performed
on a host with 1.86 GHz Pentium M CPU and 2 Gb of RAM.

MFMC Vector Sizes and Performance Results

A series of exhaustive MFMC experiments allowed us to
make an interesting observation. For all the benchmark cir-
cuits we have tested, the empirical pdf of the MFMC fault
cardinalities, in respect to the observation vectors, approxi-
mates a binomial pdf within a very small margin. The results
for two of the circuits are plotted in Figure 2.

0 2 4 6 8
0

0.1

0.2

0.3

74139

Faults

F
re
q
u
e
n
c
y

0 1 2 3 4 5
0

0.2

0.4

74182

Faults

Figure 2: Empirical distributions of the fault cardinalities
and normal pdf lines.

In the 74182 circuit, for example, given a randomly gener-
ated observation, the probabilities of a nominal kernel di-
agnosis or a quintuple fault are equal and very small. An-
alyzing the reasons for this behavior is a topic of its own,
but our suggestion is that the underlying cause is the uncer-
tainty introduced by the limited observability of the circuits

(observability is defined as the ratio between the number of
observable variables and all model variables).

The two implementations we test in this section are pa-
rameterized as follows. The importance sampling algorithm
uses biasing coefficient k = 25 and the number of sam-
ples is equal to the number of components in the strong-fault
model, i.e., S# = Hs. For the simulated annealing, we have
set Tmin = 0.1, Tmax = 0.105, and N = 4.

Name Te M Ti Mi Ts Ms

74180 1.4 2 0.04 2 0.1 2

74139 13.5 8 0.08 4.9 0.6 7.4

74153 8.8 2 0.08 2 0.2 2

74182 53.4 5 0.23 4.4 2.7 5

74283 371.9 5 5.74 3.9 18 3.9

74L85 196.9 3 3.28 3 14.5 3

74181 − − 596.48 5.4 6114.4 6.5

Table 2: Fault cardinalities and wall-clock times [s] for com-
puting of MFMC observation vectors.

The wall-clock times for the importance sampling and sim-
ulated annealing searches are shown in columns Ti and Ts

of Table 2, respectively. The cardinalities of the MFMC ob-
servation vectors, computed by the two algorithms, are in
Mi and Ms. As both MFMC computation methods in this
paper are randomized, we have averaged the values of Ti,
Mi, Ts, and Ms over 10 runs. It was possible to perform an
exhaustive search, in all the test cases except for 74181. The
results are shown in columnsM and Te, the former denoting
the cardinality of the global MFMC optima and the latter –
the computation time.

It is visible from Table 2 that Algorithm 2 outperforms
Algorithm 3 by a factor of 2.5 − 11.7. The cause of this is
mainly in the smaller number of diagnoses which have to be
computed, i.e., the importance sampling is more informed
in reaching a local optimum. The observation vectors com-
puted by Algorithm 2 lead to diagnoses of somewhat smaller
cardinality than these computed by Algorithm 3. The differ-
ence is usually one fault, except in the 74139 circuit.

Figure 3 shows the progress of the MFMC search for two
of the benchmark models. We note that for the 74139 cir-
cuit, the local optimum is found in the third iteration, while
74182 reaches its result from the first attempt. As a result
decreasing N would keep the cardinality of the result but
decrease the number of diagnostic computations.

From Figure 3 it is also visible that it is possible to climb
to a good local optimum from an arbitrary initial random in-
stantiation. This justifies the “observation bit flipping” op-
erator (implemented in the FLIPOBSERVABLE subroutine of
Algorithm 3) for climbing uphill in the stochastic search.

Conclusion

We have described two methods for computing MFMC ob-
servation vectors. The first algorithm, based on importance
sampling, is applicable to a subset of all possible proposi-
tional theories, in particular to strong-fault models. This re-
striction, which does not exist in the simulated annealing



0 100 200 300
0

2

4

6

8

Step

C
a

rd
in

a
lit

y
74139

0 100 200 300
0

2

4

6

Step

74182

Figure 3: Fault cardinalities during sample simulated an-
nealing sessions.

algorithm, results in a smaller number of calls to the under-
lying diagnostic engine and faster diagnostic reasoning.

We have studied the real-world behavior of the two algo-
rithms on a series of combinatorial circuits. In all exper-
iments, the number of faults in the diagnostic results was
close to the global optimum: in some cases Algorithm 3
leads to diagnoses having one more fault than those com-
puted by Algorithm 2.

An MBD oracle has been used in both of the algorithms.
The only disadvantage of this is the underlying complex-
ity of the diagnostic algorithms. Existing MBD heuristic
methods, however, are tailored towards testing candidate di-
agnoses in order of likelihood. With the further develop-
ment of the reasoning techniques, like the ones discussed in
this paper, we expect new MBD heuristic methods to be de-
veloped that benefit from focusing the diagnostic search on
high-cardinality diagnoses.

Finding MFMC observation vectors is of significant prac-
tical importance, and we expect more attention in the model-
based reasoning community. Finally, we hope that the
MFMC search will improve the algorithms for MBD, which
in their turn will allow us to compute MFMC observations
of better cardinality and for bigger models.

Acknowledgments

This work has been supported by STW grant DES.7015 and
SFI grant 04/IN3/I524.

References

Abramovici, M. 1981. A maximal resolution guided-probe
testing algorithm. In Proc. DAC’81, 189–195.

Bylander, T.; Allemang, D.; Tanner, M.; and Josephson, J.
1991. The computational complexity of abduction. Artifi-
cial Intelligence 49:25–60.

Console, L.; Picardi, C.; and Ribaudo, M. 2000. Diagnosis
and diagnosability analysis using PEPA. In Proc. ECAI’00,
131–135.

Darwiche, A. 1998. Model-based diagnosis using struc-
tured system descriptions. Journal of Artificial Intelligence
Research 8:165–222.

Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM 48(4):608–647.

de Kleer, J.; Mackworth, A.; and Reiter, R. 1992. Char-
acterizing diagnoses and systems. Artificial Intelligence
56(2-3):197–222.

Feldman, A., and van Gemund, A. 2006. A two-step hi-
erarchical algorithm for model-based diagnosis. In Proc.
AAAI’06.

Friedrich, G.; Gottlob, G.; and Nejdl, W. 1990. Physical
impossibility instead of fault models. In Proc. AAAI, 331–
336.

Hughes, J. 1988. Multiple fault detection using single fault
test sets. IEEETCAD 7(1):100–108.

Krishnamurthy, B., and Akers, S. B. 1984. On the com-
plexity of estimating the size of a test set. IEEE Trans.
Computers 33(8):750–753.

Kubiak, K., and Fuchs, W. K. 1991. Multiple-fault sim-
ulation and coverage of deterministic single-fault test sets.
In Proc. of the IEEE International Test Conference on Test,
956–962.

Provan, G., and Wang, J. 2007. Automated benchmark
model generators for model-based diagnostic inference. In
Proc. IJCAI’07, 513–518.

Roth, J. P. 1966. Diagnosis of automata failures: A calculus
and a method. IBM Journal of Research and Development
10:278–291.

Rutenbar, R. A. 1989. Simulated annealing algorithms: An
overview. IEEE Circuits and Devices 5(1):19–26.

Spears, W. M. 1996. Simulated annealing for hard satisfia-
bility problems. In Second DIMACS Implementation Chal-
lenge: Cliques, Coloring and Satisfiability, volume 26,
533–558.

Williams, B., and Ragno, R. 2004. Conflict-directed A*
and its role in model-based embedded systems. Journal of
Discrete Applied Mathematics.

Yuan, C., and Druzdzel, M. J. 2006. Importance sampling
algorithms for Bayesian networks: Principles and per-
formance. Mathematical and Computer Modelling 43(9-
10):1189–1207.


