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Abstract. The application of Model-Based Diagnosis to systems

that are under-observed (e.g., sensor-lean systems) is severely hin-

dered by the ambiguity of the diagnostic result. In the worst-case,

even in very restricted frameworks such as the one presented in this

paper, an observation may lead to an exponential number of diag-

noses. This is the case even if we impose a minimality criterion such

as cardinality-minimal diagnoses. To solve this problem researchers

have proposed a number of information gathering approaches such as

probing and active-testing. There is little literature however, on eval-

uating the performance of these information-gathering algorithms. In

this paper we analyze a new class of observations that maximize the

size of the minimal-cardinality (MSMC) ambiguity group. We show

a probing framework for which these observation lead to worst-case

probing sessions. We exhaustively compute these MSMC initial ob-

servations for a benchmark of 74XXX digital circuits.

1 Introduction

Model-Based Diagnosis (MBD) aims to compute, given a model

SD and an observation α, diagnoses, minimal under some minimal-

ity criterion, e.g., the minimal-cardinality set of faulty components.

Since the model SD is known a priori, much work has been devoted

to optimizing the inference process by pre-processing SD. However,

little work has focused on how α affects the inference process. This

paper focuses on how α affects the cardinality and minimality prop-

erties of diagnoses. We define a metrics, MSMC, which addresses

diagnostic ambiguity (or indistinguishability of diagnoses).

Prior work on probing [3] is multi-valued in it does not restrict

the variables domains to Boolean values. This makes the proposed

approach very useful in practical situations, however it makes the

analysis of algorithmic performance more difficult. In this paper we

propose a strictly propositional framework that allows more intuitive

presentation of assumptions, and analysis of algorithms and proper-

ties.

The contributions of this paper are as follows. (1) We define a new

class of MSMC observation vectors that are worst-case scenarios for

a class of information gathering algorithms and probing in particu-

lar. (2) We provide a formal framework for the evaluation of probing

algorithms. (3) In the proposed framework, we show a probing al-

gorithm that uses a myopic one-step look-ahead to compute optimal

probe variables. We show that MSMC observation vectors are worst-

case scenarios for this probing algorithm. (4) We compute MSMC

properties for a class of 74XXX benchmarks.

The majority of existing MBD research as well as this paper con-

sider only realistic cases in which the original “injected” faults do
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not change their location. An interesting alternative to this is a case

proposed by de Kleer that we call “The MBD Game”. The board of

this game is a digital circuit. In the beginning of the game the antag-

onist “injects” a fault that stays hidden from the protagonist. In each

turn of the game, the protagonist proposes a measurement (a probe),

the antagonist gives the value of this measurement and changes the

location of the fault so the protagonist does not find it. The goal of the

protagonist is to minimize the number of probes before finding the

fault while the antagonist aims at the opposite (maximizing the num-

ber of probes). In a subsequent game the protagonist and antagonist

change roles and the winner is the one who uses a smaller number of

probes to uniquely determine all faults.

2 Related Work

To the best of our knowledge, we are the first to define the notion of

an MSMC observation vector.

Early work [3] aimed at diagnostic convergence by computing

a probe sequence for reducing diagnostic entropy using a myopic

search strategy. This paper complements this work by providing a

strict probing framework in which we can show worst-case scenar-

ios.

Probing is not the only way to perform diagnostic information

gathering. Another approach is active testing [8] in active testing one

computes a set of optimal control settings that lead to observations

of small cardinality-minimal ambiguity groups. The MSMC frame-

work presented in this paper is also a bound on the performance of

this class of algorithms.

The material presented in this paper shows an approach to evalu-

ating the performance of the information gathering part of diagnos-

tic algorithms in worst-case scenarios. The international diagnostic

competition DXC [4] has similarly evaluated algorithms. The main

goal there, however, is the comparison of different diagnostic algo-

rithms and not stress-testing under worst-case conditions. This work

may facilitate similar diagnostic competitions in the future by allow-

ing algorithms to compete on difficult observation vectors.

A problem that is related to MSMC is that of computing obser-

vations leading to cardinality-minimal diagnoses of maximal cardi-

nality. These observations are called MFMC observations and are

studied in [6].

3 Concepts and Definitions

Our discussion continues by formalizing some MBD notions. This

article uses the traditional diagnostic definitions [3], except that we

use propositional logic terms (conjunctions of literals) instead of sets

of failing components.



Central to MBD, a model of an artifact is represented as a Well-

Formed Propositional Formula (Wff ) over some set of variables. We

discern subsets of these variables as assumable and observable.2

Definition 1 (Diagnostic System). A diagnostic system DS is de-

fined as the quadruple DS = 〈SD, COMPS, IN, OUT, INT〉,
where SD is a propositional theory over a set of variables V ,

COMPS ∪ IN ∪ OUT ⊆ V , COMPS is the set of assumables,

IN is the set of primary inputs, OUT is the set of primary outputs,

and INT = V \ {COMPS ∪ IN ∪OUT∪}. The set of observables

OBS is defined as OBS = IN ∪OUT.

Throughout this article we restrict SD to propositional theories de-

rived from Boolean circuits. We assume that SD 6|=⊥, i.e., SD is

not faulty (does not lead to diagnoses) when there is no observation.

We also assume that the sets IN, OUT, and COMPS are disjoint.

Further, we assume that the model SD is acyclic, testable, and con-

nected, i.e., starting from a primary input in IN we can always reach

a primary output in OUT, thus defining direction of each connection

(we will illustrate this with an example).

The internal variables of SD are all variables in V that are neither

assumables nor primary inputs nor primary outputs, i.e., V \ {IN ∪
OUT ∪ COMPS}.

Let COMPS = {hi} for i = 1, 2, . . . , n. We use positive assign-

ments hi = True, or simply positive literals hi, to denote healthy

components; conversely, we use negative assignments hi = False,

or negative literals ¬hi, to denote faulty components. Other authors

use different mnemonics for this: some denote faulty components

with “ab” for abnormal, while others denote healthy components us-

ing “ok”.

Not all propositional theories used as system descriptions are of

interest to MBD. Diagnostic systems can be characterized by a re-

stricted set of models, the restriction making the problem of comput-

ing diagnosis amenable to algorithms like the ones presented in this

article. We consider two main classes of models.

Definition 2 (Weak-Fault Model). A diagnostic system DS =
〈SD, COMPS, IN, OUT, INT〉, OBS = IN ∪ OUT, belongs to

the class WFM iff for COMPS = {h1, h2, . . . , hn}, SD is equiv-

alent to (h1 ⇒ F1) ∧ (h2 ⇒ F2) ∧ . . . ∧ (hn ⇒ Fn) and

COMPS ∩ V ′ = ∅, where V ′ is the set of all variables appearing in

the propositional formulae F1, F2, . . . , Fn.

Weak-fault models are sometimes referred to as models with igno-

rance of abnormal behavior [2], or implicit fault systems. Alterna-

tively, a model may specify the faulty behavior for its components

[14]. In the following definition, with the aim of simplifying the for-

malism throughout this article, we adopt a slightly restrictive repre-

sentation of faults, allowing only a single fault mode per assumable

variable. This can be easily generalized by introducing multi-valued

logic or suitable encodings [12, 5].

Definition 3 (Strong-Fault Model). A diagnostic system DS =
〈SD, COMPS, IN, OUT, INT〉, OBS = IN ∪ OUT, belongs to

the class SFM iff SD is equivalent to (h1 ⇒ F1,1) ∧ (¬h1 ⇒
F1,2) ∧ · · · ∧ (hn ⇒ Fn,1) ∧ (¬hn ⇒ Fn,2) such that 1 ≤ i, j ≤
n, k ∈ {1, 2}, {hi} ⊆ COMPS, Fj,k ∈ Wff , and none of hi

appears in Fj,k.

Membership testing for the WFM and SFM classes can be per-

formed efficiently in many cases, for example, when a model is rep-

resented explicitly as in Def. 2 or Def. 3.

2 In the MBD literature the assumable variables are also referred to as “com-
ponent”, “failure-mode”, or “health” variables. Observable variables are
also called “measurable”, or “control” variables.

3.1 A Running Example

We use the Boolean circuit shown in Fig. 1 to illustrate many no-

tions and algorithms in this article. The subtractor, shown there,

consists of seven components: an inverter, two or-gates, two xor-

gates, and two and-gates. The expression h ⇒ (o⇔ ¬i) models

the normative (healthy) behavior of an inverter, where the variables

i, o, and h represent input, output and health respectively. Simi-

larly, an and-gate is modeled as h ⇒ (o⇔ i1 ∧ i2) and an or-

gate by h ⇒ (o⇔ i1 ∨ i2). Finally, an xor-gate is specified as

h⇒ [o⇔ ¬ (i1 ⇔ i2)].
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Figure 1. A subtractor circuit

The above propositional formulae are copied for each gate in Fig. 1

and their variables renamed in such a way as to properly connect the

circuit and disambiguate the assumables, thus obtaining a proposi-

tional formula for the Boolean subtractor, given by:

SDw = {h1 ⇒ [i⇔ ¬ (y ⇔ p)]}∧
{h2 ⇒ [d⇔ ¬ (x⇔ i)]}∧
[h3 ⇒ (j ⇔ y ∨ p)] ∧ [h4 ⇒ (m⇔ l ∧ j)]∧
[h5 ⇒ (b⇔ m ∨ k)] ∧ [h6 ⇒ (x⇔ ¬l)]∧
[h7 ⇒ (k⇔ y ∧ p)]

(1)

A strong-fault model for the Boolean circuit shown in Fig. 1 is con-

structed by assigning fault-modes to the different gate types. We will

assume that, when malfunctioning, the output of an xor-gate has the

value of one of its inputs, an or-gate can be stuck-at-one, an and-gate

can be stuck-at-zero, and an inverter behaves like a buffer. This gives

us the following strong-fault model formula for the Boolean subtrac-

tor circuit:

SDs = SDw ∧ [¬h1 ⇒ (i⇔ y)] ∧ [¬h2 ⇒ (d⇔ x)]
(¬h3 ⇒ j) ∧ (¬h4 ⇒ ¬m) ∧ (¬h5 ⇒ b)
[¬h6 ⇒ (x⇔ l)] ∧ (¬h7 ⇒ ¬k)

(2)

For both models (SDs and SDw), the set of assumable variables is

COMPS = {h1, h2, . . . , h7} and the set of observable variables is

OBS = {x, y, p, d, b}, where IN = {x, y, p} are the primary inputs

and OUT = {d, b} are the primary outputs.

Note that each component in SDw or SDs has inputs and an out-

put. For example, the inverter which is associated with h6 has x as

its input and its output is l. The and-gate h4 has two inputs: l and j
and one output m.
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3.2 Diagnosis and Minimal Diagnosis

The traditional query in MBD computes terms of assumable vari-

ables which are explanations for the system description and an ob-

servation.

Definition 4 (Health Assignment). Given a system DS =
〈SD, COMPS, IN, OUT, INT〉, an assignment ω to all variables in

COMPS is defined as a health assignment.

A health assignment ω is a conjunction of propositional literals. In

some cases it is convenient to use the set of negative or positive lit-

erals in ω. These two sets are denoted as Lit
−(ω) and Lit

+(ω),

respectively.

In our example, the “all nominal” assignment is ω1 = h1 ∧ h2 ∧
· · ·∧h7. The health assignment ω2 = h1∧h2∧h3∧¬h4∧h5∧h6∧
¬h7 means that the two and-gates from Fig. 1 are malfunctioning.

What follows is a formal definition of consistency-based diagno-

sis.

Definition 5 (Diagnosis). Given a diagnostic system DS =
〈SD, COMPS, IN, OUT, INT〉, OBS = IN ∪ OUT, an observa-

tion α over some variables in OBS, and a health assignment ω, ω is

a diagnosis iff SD ∧ α ∧ ω 6|=⊥.

There is a total of 96 possible diagnoses given SDw and an ob-

servation α1 = x ∧ y ∧ p ∧ b ∧ ¬d. Example diagnoses are

ω3 = ¬h1∧h2∧· · ·∧h7 and ω4 = h1∧¬h2∧h3∧· · ·∧h7. Trivially,

given a weak-fault model, the “all faulty” health assignment (in our

example ωa = ¬h1 ∧ · · · ∧ ¬h7) is a diagnosis for any instantiation

of the observable variables in OBS (see Def. 2).

In the MBD literature, a range of types of “preferred” diagnosis

has been proposed. This turns the MBD problem into an optimization

problem. In the following definition we consider the common subset-

ordering.

Definition 6 (Minimal Diagnosis). A diagnosis ω⊆ is defined

as minimal, if no diagnosis ω̃⊆ exists such that Lit
−(ω̃⊆) ⊂

Lit
−(ω⊆).

Consider the weak-fault model SDw of the circuit shown in Fig. 1

and an observation α2 = ¬x ∧ y ∧ p ∧ ¬b ∧ d. In this example, two

of the minimal diagnoses are ω⊆
5 = ¬h1∧h2∧h3∧h4∧¬h5∧h6∧h7

and ω⊆
6 = ¬h1 ∧ h2 ∧ · · · ∧ h5 ∧ ¬h6 ∧ ¬h7. The diagnosis ω7 =

¬h1∧¬h2∧h3∧h4∧¬h5∧h6∧h7 is non-minimal as the negative

literals in ω⊆
5 form a subset of the negative literals in ω7.

Definition 7 (Subset-Minimal Ambiguity Group). The subset-

minimal ambiguity group of a system description SD and an obser-

vation α, denoted as Ω⊆(SD∧α), is defined as the set of all minimal

diagnoses of SD ∧ α.

Note that the set of all minimal diagnoses characterizes all diagnoses

for a weak-fault model, but that does not hold in general for strong-

fault models [2]. In the latter case, faulty components may “exoner-

ate” each other, resulting in a health assignment containing a proper

superset of the negative literals of another diagnosis not to be a diag-

nosis. In our example, given SDs and α3 = ¬x∧¬y∧¬p∧ b∧¬d,

it follows that ω⊆
8 = h1 ∧ h2 ∧ ¬h3 ∧ h4 ∧ · · · ∧ h7 is a diagnosis,

but ω9 = h1 ∧h2 ∧¬h3 ∧¬h4 ∧ · · · ∧h7 is not a diagnosis, despite

the fact that the negative literals in ω9 ({¬h3,¬h4}) form a superset

of the negative literals in ω⊆
8 ({¬h3}).

Definition 8 (Number of Minimal Diagnoses). Given a system de-

scription SD and an observation α, the number of minimal diagnoses,

denoted as |Ω⊆(SD∧α)|, is defined as the size of the subset-minimal

ambiguity group Ω⊆(SD ∧ α).

Continuing our running example, |Ω⊆(SDw ∧ α2)| = 8 and

|Ω⊆(SDs ∧ α3)| = 2. The number of non-minimal diagnoses of

SDw ∧ α2 is 61.

Definition 9 (Cardinality of a Diagnosis). The cardinality of a diag-

nosis ω, denoted as |ω|, is defined as the number of negative literals

in ω.

Diagnosis cardinality gives us another partial ordering: a diagnosis is

defined as minimal cardinality iff it minimizes the number of nega-

tive literals.

Definition 10 (Minimal-Cardinality Diagnosis). A diagnosis ω≤ is

defined as minimal-cardinality if no diagnosis ω̃≤ exists such that

|ω̃≤| < |ω≤|.

The cardinality of a minimal-cardinality diagnosis computed from

a system description SD and an observation α is denoted as

MinCard(SD∧α). For our example model SDw and an observation

α4 = x∧y∧p∧¬b∧¬d , it follows that MinCard(SDw∧α4) = 2.

Note that in this case all minimal diagnoses are also minimal-cardi-

nality diagnoses.

A minimal cardinality diagnosis is a minimal diagnosis, but the

opposite does not hold. There are minimal diagnoses that are not

minimal-cardinality diagnoses. Consider the example SDw and α2

given earlier in this section, and the two resulting minimal diagnoses

ω⊆
5 and ω⊆

6 . From these two, only ω⊆
5 is a minimal-cardinality diag-

nosis.

Definition 11 (Minimal-Cardinality Ambiguity Group). The

minimal-cardinality ambiguity group of a system description SD and

an observation α, denoted as Ω≤(SD∧α), is defined as the set of all

minimal-cardinality diagnoses of SD ∧ α.

Counting the number of diagnoses in Ω≤(SD∧ α) gives us the final

definition for this section.

Definition 12 (Number of Minimal-Cardinality Diagnoses). The

number of minimal-cardinality diagnoses, denoted as |Ω≤(SD∧α)|,
is defined as the cardinality of Ω≤(SD ∧ α).

Computing the number of minimal-cardinality diagnoses for the run-

ning example results in |Ω≤(SDw∧α2)| = 2, |Ω≤(SDs∧α3)| = 2,

and |Ω≤(SDw ∧ α4)| = 4.

4 Observation Vector Optimization Problems

Consider the set of diagnoses in a subset-minimal ambiguity group

Ω⊆(SD ∧ α). We can construct a distribution of the subset-mini-

mal diagnoses in Ω⊆(SD∧ α) by counting the number of diagnoses

with cardinality 0, 1, 2, . . . and computing how frequently each car-

dinality appears in Ω⊆(SD ∧ α). The distribution of the diagnosis

cardinalities in Ω⊆(SD ∧ α) is denoted as eΩ⊆(SD ∧ α). Note that
eΩ⊆(SD ∧ α) can be arbitrary, i.e., we can construct a system de-

scription SD and an observation α resulting in any eΩ⊆(SD ∧ α).

In this paper, SD is fixed, and the main focus of our work is how
eΩ⊆(SD ∧ α) changes for various instantiations of the observation

α. In particular we are interested in computing observations α that

optimize certain parameters defined on the distribution eΩ⊆(SD∧α).

Figure 2 shows eΩ⊆(SD∧α) for a weak-fault model of the 74182
combinatorial circuit (part of the 74XXX/ISCAS85 benchmark, see
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Figure 2. An example distribution of the cardinalities of the subset-
minimal ambiguity group for a given observation α. Other observations lead

to different distributions. All problems are defined as computing an
observation vector (showing all possible observation vectors for this

example would add another dimension to the figure) that optimizes certain
properties of this distribution. These properties are indicated by arrows.

Sec. 6) and an arbitrary observation α. In addition to that, Fig. 2

illustrates a number of observation vector optimization problems.

From the seven observation vector optimization problems shown

in Fig. 2, two are of practical significance to MBD: MFMC and

MSMC. We next formally define those.

Problem 1 (MFMC Observation). Given a system DS = 〈SD,

COMPS, IN, OUT, INT〉, compute an observation α (defined as

Max-Fault Min-Cardinality (MFMC) observation) such that ω is a

minimal-cardinality diagnosis of SD ∧ α and |ω| is maximized.

In addition to an MFMC observation, we also refer to an MFMC di-

agnosis of a model SD. This refers to any of the minimal-cardinality

diagnoses ω≤ of SD ∧ α where α is an MFMC observation. The

cardinality of this diagnosis is denoted as MFMC (SD) and, next to

the associated MFMC observations, this is a key model property we

seek to compute.

Problem 2 (MSMC Observation). Given a system DS = 〈SD,

COMPS, IN, OUT, INT〉, compute an observation α (defined as

Max-Size Min-Cardinality ambiguity group (MSMC) observation)

such that |Ω≤(SD ∧ α)| is maximized.

We denote |Ω≤(SD ∧ α)| where α is an MSMC observation as

MSMC (SD).

Fig. 2 also illustrates some MBD problems that are less often en-

countered in practice. The min-fault max-cardinality problem, for ex-

ample, is to compute the following observation. First, consider the

subset-minimal ambiguity group of each different observation (there

are 2|OBS| different observations). Second, take the observation that

minimizes the number of faults in the maximum-cardinality diagno-

sis in each subset-minimal ambiguity group.

A related problem that is not illustrated in Fig. 2 is the max-size

subset-minimal ambiguity group. The problem is to compute an ob-

servation α that maximizes the size of the subset-minimal ambiguity

group.

5 Probing

Probing aims to minimize the expected number of diagnoses that re-

sult from the possible set of outputs that may occur from the mea-

surement of a given internal (probe) variable.

5.1 Computing the Expected Number of MC
Diagnoses

We will compute the expected number of diagnoses for a set of ob-

servable variables M (M ⊆ OBS). The initial observation α and

the set of MC diagnoses D = Ω≤(SD, α) modify the probability

density function of subsequent outputs (observations), i.e., a subse-

quent observation α′ changes its likelihood. The (non-normalized) a

posteriori probability of an observation α′, given a function Ω≤ that

computes the set of MC diagnoses and an initial observation α, is:

Pr(α′|SD, α) =
|Ω∩(Ω≤(SD, α), α′)|

|Ω≤(SD, α)|
(3)

The above formula computes the probability of a given a priori set

of diagnoses restricting the possible outputs, i.e., we assume that the

probability is the ratio of the number of remaining diagnoses to the

number of initial diagnoses. In practice, there are many α for which

Pr(α′|SD, α) = 0, because a certain fault heavily restricts the pos-

sible outputs of a system (i.e., the set of the remaining diagnoses in

the numerator is empty).

The expected number of remaining MC diagnoses for a variable

set M , given an initial observation α, is then the weighted average of

the intersection sizes of all possible instantiations over the variables

in M (the weight is the probability of an output):

E≤(SD, M |α) =

X

α′∈M∗

|Ω∩(D, α′)| · Pr(α′|SD, α)

X

α′∈M∗

Pr(α′|SD, α)
(4)

where D = Ω≤(SD, α) and M∗ is the set of all possible assignments

to the variables in M . Replacing (3) in (4) and simplifying gives us

the following definition:

Definition 13 (Expected Minimal-Cardinality Diagnoses Intersec-

tion Size). Given a system ATS and an initial observation α, the

expected remaining number of MC diagnoses E≤(SD, OBS|α) is

defined as:

E≤(SD, OBS|α) =

X

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|2

X

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|
(5)

where OBS∗ is the set of all possible assignments to all variables in

OBS.

The expected number of remaining MC diagnoses for one variable

simplifies the expression in (5) to:

E≤(SD, v|α) =
p(SD, v, α)2 + q(SD, v, α)2

p(SD, v, α) + q(SD, v, α)
(6)

where

p(SD, v, α) = |Ω∩(Ω≤(SD, α), v)| (7)

and

q(SD, v, α) = |Ω∩(Ω≤(SD, α),¬v)| (8)
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Algorithm 1: Probing framework

Input: DS, a diagnostic system,

DS = 〈SD, IN, OUT, COMPS, INT〉
Result: p, number of probes, R ∈ Z

Local variables: α, observation term

ω≤, cardinality-minimal diagnosis

z, probe variable

l, literal

1 〈α, ω≤〉 ← INJECTFAULT(DS)
2 p← 0

3 while |Ω≤(SD, α)| 6= 1 do

4 z ← COMPUTEPROBE(SD, α, INT)

5 l ← EVALUATEPROBE(SD, α, ω≤, z)
6 α← α ∧ l
7 INT← INT \ z
8 p← p + 1

9 return p

5.2 Probing Algorithm

Algorithm 1 shows a generalized procedure for the evaluation of the

performance of probing algorithms. It can be generalized to evaluate

the performance of any information gathering procedures (such as

active testing [7]), to include probing costs, etc.

Algorithm 1 starts by generating an observation α that leads to a

cardinality-minimal diagnosis ω≤. This is done by a call to the IN-

JECTFAULT subroutine in line 1. Algorithm 1 needs a diagnostic

engine that can count the number of cardinality-minimal diagnoses

(line 3). The probing algorithm is called in line 4. The probing algo-

rithm returns a variable (probe) that will be “measured”. The “mea-

sured” values of probe z is computed by the EVALUATEPROBE aux-

iliary subroutine in line 5. Methods such as Binary Constraint Prop-

agation (BCP) [10] or SAT solvers are suitable for calculating the

value of z given the observation and the injected cardinality-minimal

fault. Algorithm 1 evaluates the performance of probing algorithms

in terms of the number of probes p.

The following assumptions are made when designing Alg. 1:

Monotone |Ω≤(SD, α)|: We restrict ourselves to such system de-

scriptions SD such that if α and β are two observations such that

α ⊇ β then it holds that |Ω≤(SD, α)| ≥ |Ω≤(SD, α)|. We can

proof that this holds for “well-formed” system descriptions and

weak-fault models. The idea is to construct a system of Boolean

equations B in the following manner. First, the propositional Wff

in SD is converted to a Boolean equation in a straightforward man-

ner and the latter is added to B. Second, for each literal li ∈ α,

an equation of the form li = 1 or li = 0 (depending on the polar-

ity of li) is appended to B. A system of Boolean equations B′ is

constructed from SD and β in an analogous way. The solutions of

B and B′ are the implicants of SD ∧ α and SD ∧ β, respectively.

Observe, that, due to the fact that α ⊇ β, the equations in B′ are

a superset of these in B and both are over the same set of vari-

ables. But S(B′) ≤ S(B), where S(X) denotes the number of

solutions in a system X. The above holds also when the solutions

of B and B′ are ordered according to their cardinality. Hence, if

a diagnosis with a cardinality smaller than the smallest cardinality

diagnosis in B′ exists, it is in B.

Non-ambiguous fault: Given a diagnostic system DS = 〈SD, IN,

OUT, COMPS, INT〉we assume that there exists an observation

α and an instantiation over a set of variables P ⊆ INT such that

|Ω≤(SD, α)| = 1. This is easily achievable if SD ∈WFM and

if INT = V \ {IN ∪OUT ∪ COMPS}.
No “don’t cares” and well-formed SD: We require all SD to be

models of well-formed digital circuits. A well-formed digital cir-

cuits is constructed from standard AND, OR, NAND, or NOR

gates of two or more inputs, from XOR gates, buffers, and in-

verters. There are no “hanging” wires, each output is connected to

the input of another gate or two a primary output. A well-formed

circuit does not use any feedback.

Algorithm 2 shows a simple greedy approach to compute the optimal

probe variable based on the expected cardinality-minimal intersec-

tion size.

The computational performance of Alg. 2 is dominated by the

complexity of the diagnostic engine that counts the remaining num-

ber of cardinality minimal diagnoses in lines 2 and 3. Assuming that

this number decreases monotonically improves the complexity sig-

nificantly.

Algorithm 2: Probing algorithm

Input: SD, a system description

Input: α, an observation

Input: INT, a set of probe variables

Result: an optimal probe variable z ∈ INT

Local variables: p, q, number of diagnoses

E, E⋆, reals, expected number of diagnoses

v, candidate probe variable

1 foreach v ∈ INT do

2 p← |Ω∩(Ω≤(SD, α), v)|

3 q ← |Ω∩(Ω≤(SD, α),¬v)|

4 E = p2+q2

p+q

5 if E⋆ < E then

6 E⋆ ← E
7 z ← v

8 return z

We can see that the number of probes k required for the uniquely

(non-ambiguous) isolation of a fault can be an arbitrary value 0 ≤
k ≤ |INT|. There are circuits such as n chained buffers (or inverters)

for which Alg. 2 can isolate a single-fault in k = log n calls. In the

worst-case, Alg. 2 needs to probe each probe variable.

We can see that the performance of Alg. 2 is determined by SD
and the injected fault ω≤ injected by Alg. 1. As SD is given, the

only variable that Alg. 1 can modify is the initial set of cardinality-

minimal diagnoses. It is straightforward to show then that a worst-

case scenario for Alg. 2 is when INJECTFAULT(DS) returns an

MSMC fault.

6 Experimental Results

This section discusses some results from an implementation of the

algorithms described in the previous sections.

6.1 Experimental Setup, Simplification Results and
Bounds

We have experimented on the medium-sized circuits from the

74XXX family [11]. Table 1 provides a summary of the 74XXX
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circuits. The number of inputs, outputs and components are given in

the third, fourth, and fifth column of Table 1, respectively.

Table 1. 74XXX circuits

Name Description |IN| |OUT| |COMPS|

74182 4-bit CLA 9 5 19

74L85 4-bit comparator 11 3 33

74283 4-bit adder 9 5 36

74181 4-bit ALU 14 8 65

c6288 32-bit multiplier 32 32 2 416
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Figure 3. n-bit parallel multiplier (n = 2k). For c6288, n = 32.

In addition to the 74XXX circuits we have also considered a vari-

ation of the c6288 multiplier, part of the ISCAS85 benchmark. De-

spite the large number of components, c6288 has very regular struc-

ture: it is composed entirely of Boolean adders and and-gates as

shown in Fig. 3 (the high-level structure of c6288 and Fig. 3 are due

to the reverse-engineering efforts of [11]). Inspecting the reverse-

engineered c6288 allowed us to construct similar smaller multipliers

that have between 1 and 32 outputs. The smallest of them is amenable

to an exhaustive approach. The regular structure of c6288 allows us

to analytically hypothesize about the MFMC/MSMC properties of

c6288 and the whole family of multipliers that have the same high-

level structure. For example, one can show experimentally that for

an n-bit multiplier having the structure of Fig. 3, it always holds that

MFMC
≤ = n.

6.2 Solving the 74XXX Models Exhaustively

We first tried to exhaustively enumerate the space of all input/output

assignments. For 74182, 74L85, and 74283 the size of this space

is 16 384 (14 observable variables), while for 74181, it is 4 194 304
(22 observable variables). We used two state-of-the-art complete di-

agnostic solvers: HA∗ [9] and NGDE [1].

By using HA∗ in combination with cones [13] we computed

all minimal-cardinality ambiguity groups for the 74XXX models.

74182 was the only circuit for which we could compute all sub-

set-minimal ambiguity groups (these are different from the cardinal-

ity-minimal ambiguity groups). We recomputed all diagnoses with

NGDE, which is a completely independent implementation by one

of the authors of this paper, and the HA∗ and NGDE results match.

Furthermore, NGDE did not use cones for 74XXX, while HA∗ did,

thus independently verifying the correctness of the MFMC/MSMC

values, and the correct implementation of the algorithms for comput-

ing minimal diagnoses.

The exhaustive search results of the small circuits are shown

in Table 2. We can see that for 74182, 74L85, and 74283,

MFMC (SD) = |OUT|, and for 74181 the MFMC value is

smaller than the number of outputs |OUT|. The MSMC value

for the 74XXX models grows quickly with increasing model size

(|COMPS|).

Table 2. Properties of 74XXX subset-minimal diagnoses

Optimization Problem 74182 74L85 74283 74181

min-fault max-cardinality 1 1 − −
max-fault max-cardinality 14 10 − −
min-cardinality-range 0 0 − −
max-cardinality-range 9 8 − −
MFMC 5 3 5 7

MSMC 400 468 9 132 42 112

Figure 4 is a two-dimensional histogram of the minimal-cardinal-

ity ambiguity groups of the 74XXX models. Figure 4 plots on the

z-axis the number of observation vectors leading to a minimal-cardi-

nality ambiguity group of size |Ω≤(SD ∧ α)| (y-axis) and minimal

cardinality |ω| (x-axis). We can see that there are no observations

leading to low minimal-cardinality and high ambiguity group size

and vice versa. We can also see that, in general, an increase in MFMC

leads to an increase in MSMC. Furthermore, MFMC/MSMC obser-

vation vectors are relatively rare and the MSMC observation vectors

are not always MFMC observation vectors (consider, for example,

the histogram of 74181 in Figure 4) and vice-versa.

There are 36 MSMC observation vectors for 74182, for example.

Of those, 18 observations lead to a minimal-cardinality diagnosis of

cardinality 4 and 18 observations lead to a minimal-cardinality diag-

nosis of cardinality 5. All MSMC observations lead to nearly MFMC

diagnoses. As it is visible from Fig. 4, MFMC observations lead to

multiple values for the sizes of the minimal-cardinality ambiguity

groups. In 74182, for example, there are 7 MFMC observations that

lead to a unique minimal-cardinality diagnosis.

Given a system DS, we denote as g(DS) the probability density

function of the minimal-cardinalities of the diagnoses of all obser-

vations in DS. Figure 5 shows a histogram of the true minimal-

diagnosis cardinalities for the four 74XXX circuits for which we

have exhaustively determined g(DS), fitted by a normal distribution.

Figure 5 shows the number of observations per minimal-cardinal-

ity. We noticed that a normal distribution fits the empirical data well

in Fig. 5 (the standard error for 74182, 74L85, 74283, and 74283
is 154, 244, 100, and 18 955, respectively). This is explained as fol-

lows. Given an observation α leading to a k-fault minimal diagnosis,

we associate a nominal-diagnosis observation αn, which may dif-

fer from α only in the OUT sub-vector. The number of OUT-values

in which α and αn differ is called the distance of α, D(SD, α). If

n = |OUT| is the number of output variables in SD, then starting

from any nominal observation αn, there are nCk ways to select a

distance-k vector α, each of which corresponds to a diagnosis. In the

case where each such diagnosis is a minimum cardinality diagnosis,

g(SD) is binomially-distributed.

To understand better why the distribution of the minimal-cardi-
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Figure 4. Number of observation vectors vs. cardinality and number of minimal-cardinality diagnoses bivariate histograms for 74XXX
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Figure 5. 74XXX minimal-cardinalities distribution

nality diagnoses of many circuits can be approximated with a bi-

nomial distribution, consider WFM of the two synthetic circuits

shown in Fig. 6. Both circuits consists of buffers only, where each

...

i1 o1

i2 o2

hn

in on

h2

h1

(a) Circuit containing n separate
buffers

...
...

i2

i1 o1

o2

in
hn

on

h1 h′′
1

h2 h′′
2

h′′
n

z1
h′
1

z2

(b) Converging and diverging cir-
cuit

Figure 6. A model with a binomial minimal-cardinality distribution (left)
and a model with one nominal minimal-cardinality diagnosis and one single-

fault minimal-cardinality diagnosis (right)

buffer is modeled as h ⇒ (o ⇔ i). Both circuits have the same

input and output variables (IN = {i1, i2, . . . , in}, and OUT =
{o1, o2, . . . , on}). The distributions of the minimal-cardinality diag-

noses, however, are very different. The model of the circuit shown in

Fig. 6(a) has one nominal behavior (health assignment in which all

health literals are positive) and n single faults (health assignments

in which there is exactly one negative literal). The same circuit has
n(n−1)

2
double faults,

n(n−1)(n−2)
6

triple faults, etc. Any observation

for the model of the circuit shown in Fig. 6(b), however, leads either

to nominal behavior or to the single fault ¬h′
1. As we have seen in

Fig. 5, the distributions of the 74XXX circuits resemble more the

distribution associated with Fig. 6(a). The density mass of all distri-

butions shown in Fig. 5 are skewed to the left and the amount with

which a distribution is skewed to the left depends on the masking
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phenomenon demonstrated in Fig. 6(b).

Although the above model is an approximation, it provides use-

ful bounds on MFMC errors. Let m be the number of bits in the

output assignment that differ from the nominal output value. For the

74XXX and ISCAS85 benchmarks, the fraction of “m-flips” result-

ing in minimal-cardinality diagnoses of cardinality smaller than m is

relatively small and does not vary significantly for different m.

Figure 7 shows a histogram of the minimal-cardinality ambiguity

group sizes for all 74XXX circuits. We can see that when increasing

the minimal-cardinality ambiguity group size, the number of obser-

vation vectors decreases rapidly. This depends on the model topol-

ogy, and is less prevalent in 74182. The MSMC value of 74181, for

example, is 42 112, and as is visible from Fig. 7, there are relatively

few observations leading to such large ambiguity groups.

0 100 200 300 400
10

0

10
5

74182

|Ω
≤
(SD ∧ α)|

#
 o

f 
o
b
s
e
rv

a
ti
o
n
 v

e
c
to

rs

0 100 200 300 400 500
10

0

10
5

74L85

|Ω
≤
(SD ∧ α)|

#
 o

f 
o
b
s
e
rv

a
ti
o
n
 v

e
c
to

rs

0 2000 4000 6000 8000 10000
10

0

10
5

74283

|Ω
≤
(SD ∧ α)|

#
 o

f 
o
b
s
e
rv

a
ti
o
n
 v

e
c
to

rs

0 2 4 6

x 10
4

10
0

10
5

10
10

74181

|Ω
≤
(SD ∧ α)|

#
 o

f 
o
b
s
e
rv

a
ti
o
n
 v

e
c
to

rs

Figure 7. 74XXX minimal-cardinality ambiguity group sizes distribution

Table 3 shows the MFMC and MSMC values of several small mul-

tipliers (see Fig. 3). We have created two types of fault-models: in

Type I models we have assigned only one health variable to each

half-adder or full-adder (i.e., all the gates in an adder fail simultane-

ously), and in Type II fault-models we have associated an assumable

with each logic gate (as everywhere else in this paper). The 2-bit

multiplier consists only of a single and-gate, hence all MFMC and

MSMC values are trivially 1. For Type I fault-models we can see that

the MFMC value of an n-bit multiplier is n/2+1 (n = 2k, k ∈ N
+).

For Type II multipliers the MFMC value of an n-bit multiplier is n.

Table 3. MFMC and MSMC values of small multipliers

Type I Type II

bits (|OUT|) MFMC MSMC MFMC MSMC

2 1 1 1 1

4 3 6 4 9

6 4 58 6 3 969

8 5 845 − −

7 Conclusions

This paper has defined a class of MSMC observation vectors which

are the worst-case for the fault ambiguity (or indistinguishability).

The MSMC of real-world systems is an important property quantify-

ing the diagnosability of a model, as it shows the maximum number

of cardinality-minimal diagnoses that can be returned by observing a

set of variables.

We have shown a probing algorithm for which an MSMC obser-

vation vector results in the largest number of steps for reducing the

initial set of cardinality-minimal diagnoses to a single candidate.

Computing MSMC-related properties of models of real-world ar-

tifacts is important for (1) assessing the performance of MBD and

information gathering algorithms and (2) better understanding the

diagnosability properties of the design.

Computing MSMC is a difficult counting problem and its com-

plexity is hypothesized to be at least the complexity of counting the

number of cardinality-minimal diagnoses entailed by a system de-

scription and an observation. As a result algorithms that can compute

MSMC must utilize properties of the model, such as structure and hi-

erarchy, in order to provide results for systems of practical size.

We have computed MSMC values for the 74XXX models. As a

future work we plan to design more efficient MSMC algorithms and

to apply them to a class of larger benchmarks.
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