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Abstract: A framework to compare and evaluate diagnosis algorithms (DAs) has been created jointly by 

NASA Ames Research Center and PARC. In this paper, we present the first concrete implementation of 

this framework as a competition called DXC’09. The goal of this competition was to evaluate and compare 

DAs in a common platform and to determine a winner based on diagnosis results. 12 DAs (model-based 

and otherwise) competed in this first year of the competition in 3 tracks that included industrial and 

synthetic systems. Specifically, the participants provided algorithms that communicated with the run-time 

architecture to receive scenario data and return diagnostic results. These algorithms were run on extended 

scenario data sets (different from sample set) to compute a set of pre-defined metrics. A ranking scheme 

based on weighted metrics was used to declare winners. This paper presents the systems used in DXC’09, 

description of faults and data sets, a listing of participating DAs, the metrics and results computed from 

running the DAs, and a superficial analysis of the results.  

 

1. INTRODUCTION 

The DX community meets every year at the International 

Workshop on the Principles of Diagnosis
1
 to discuss the latest 

developments in the field of model-based diagnosis. Various 

diagnostic modeling approaches, associated reasoning 

algorithms, and applications to real and toy systems are 

presented. However, efforts to compare and evaluate 

diagnosis algorithms (DAs) on a common platform have been 

far and few in between. Other diagnosis communities have 

also not been actively involved in creating such platforms.  

There have been attempts to benchmark DAs by computing 

performance metrics/indices (Orsagh et al., 2002, Bartys et 

al., 2006, Simon, et al., 2008). However these approaches 

were focused on specific domains and lack a general-purpose 

representation. In an effort to bridge this gap a framework 

called the DXC framework (Kurtoglu et al., 2009) was created 

to provide a level playing field to evaluate and compare DAs. 

This framework tried to establish a general purpose 

representation for system description, scenario data format, 

and diagnostic result format. A run-time architecture was 

created to execute DAs under similar conditions and compute 

performance metrics based on diagnostic output and ground-

truth data.  

In this paper, we present the first concrete implementation of 

the DXC framework called the DX Competition
2
 (DXC’09). 

12 DAs (model-based and otherwise) competed in 3 tracks 

that included industrial and synthetic systems. Initially the 

                                                
1
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participants were provided with system descriptions and a 

sample data set that included nominal and fault scenarios. The 

participants had to provide algorithms that communicated 

with the run-time architecture to receive scenario data and 

return diagnostic results. For the competition we ran all the 

algorithms on extended scenario data sets (different from 

sample set) to compute a set of pre-defined metrics. The 

metrics (with associated weighting) were used to rank the 

DAs.  

The rest of this paper details the constituent pieces of this 

competition. Section 2 describes the tracks and systems used 

in the competition. Section 3 lists the classes of faults that 

were injected, how they were injected, and the sensor data sets 

that were generated as a result. Section 4 defines all the 

metrics used in the competition. Section 5 describes the 

conditions of the competition including information on how 

the algorithms were started and executed. Section 6 lists and 

briefly describes the participating DAs. Section 7 provides 

results of the competition and an analysis of the performance 

of the DAs. Section 8 introduces the assumptions that were 

made in implementing this competition, issues that were 

identified, and scope for possible extensions. Section 9 

presents the conclusion and looks forward to the continuation 

of this competition in future years. 

2. TRACKS & SYSTEMS 

One of the primary goals of DXC’09 is to facilitate the 

development of domain independent diagnostic software. 

Furthermore, diagnostic software should be stress tested with 

difficult cases to determine its strengths and weaknesses and 

to pose a challenge. A diagnostic problem may be interesting 

due to its practical importance or it may be challenging due to 



 

 

     

 

its size and complexity. To facilitate all this we included 

multiple DXC tracks, and (optionally) multiple tiers in each 

track. The DXC’09 tracks and tiers are summarized in Table 

1. 

Table 1. Tracks, systems, and tier s in DXC'09 

Track Tier  Systems Descr iption 

Industrial 

1 ADAPT-

Lite 

Basic faults injected into a 

simplified EPS (Electrical 

Power System) testbed 

2 ADAPT More complex faults 

injected into the full EPS 

distribution system 

Synthetic 1 ISCAS85 Multiple faults injected into 

the circuits from the 

ISCAS85 benchmarks 

 

2.1 Industrial Track  

The hardware system for the DXC’09 Industrial Track is the 

Electrical Power System testbed in the ADAPT lab at NASA 

Ames Research Center (Poll et al., 2007). The ADAPT EPS 

testbed provides a means for evaluating diagnostic algorithms 

through the controlled insertion of faults in repeatable failure 

scenarios. The EPS testbed incorporates low-cost commercial 

off-the-shelf (COTS) components connected in a system 

topology that provides the functions typical of aerospace 

vehicle electrical power systems: energy conversion 

/generation (battery chargers), energy storage (three sets of 

lead-acid batteries), power distribution (two inverters, several 

relays, circuit breakers, and loads) and power management 

(command, control, and data acquisition). The EPS delivers 

AC (Alternating Current) and DC (Direct Current) power to 

loads, which in an aerospace vehicle could include subsystems 

such as the avionics, propulsion, life support, environmental 

controls, and science payloads. A data acquisition and control 

system commands the testbed into different configurations 

and records data from sensors that measure system variables 

such as voltages, currents, temperatures, and switch positions.  

The scope of the ADAPT EPS testbed used for DXC 

Industrial Track is shown in Fig. 1. Tier 1 has the reduced 

scope as indicated. The nomenclature in the figure is 

consistent with the system description provided to all 

participants, which provides component, connection, and 

mode information. The characteristics of Tier 1 and Tier 2 are 

summarized in Table 2. The greatest simplification of Tier 1 

relative to Tier 2 is not the reduced size of the domain but the 

elimination of nominal mode transitions. The starting 

configuration for Tier 1 data has all relays and circuit breakers 

closed and no nominal mode changes are commanded during 

the scenarios. Hence, any noticeable changes in sensor values 

may be correctly attributed to faults injected into the 

scenarios. By contrast, the initial configuration for Tier 2 data 

has all relays open and nominal mode changes are 

commanded during the scenarios. The commanded 

configuration changes result in adjustments to sensor values 

as well as transients which are nominal and not indicative of 

injected faults. 

 

Table 2. Industr ial tr ack tier  character istics 

Aspect Tier  1 Tier  2 

#Comps/Modes 37 / 93 173 /  430 

Initial State Relays closed; 

circuit breakers 

closed 

Relays open; circuit 

breakers closed 

Nominal mode 

changes? 

No Yes 

 

2.2 Synthetic Track 

For the synthetic track, we have used the well-known 

benchmark models of ISCAS85 circuits (Brglez and 

Fujiwara, 1985). These circuits are purely combinational, i.e., 

they contain no flip-flops or other memory elements. Note 

that the high-level structure of the ISCAS85 circuits, which 

can be beneficial to Model-Based Diagnosis (MBD) analysis, 

has been flattened out. A reverse engineering effort had 

resulted in high-level Verilog models (Hansen et al., 1999). 

Table 3 summarizes the circuits used in the synthetic 

DXC’09 track. Note that for many tasks of MBD (e.g., 

computing MFMC (Max-Fault Min-Cardinality) observations 

(Feldman et al., 2008)), the number of components in the 

ISCAS85 circuits can be reduced by performing cone 

identification (Siddiqi and Huang, 2007, de Kleer, 2008). The 

number of components in the reduced circuits is shown in the 

rightmost column of Table 3. We have left the decision if to 

identify cones to the competitors, i.e., we distribute the non-

reduced circuits. In this first year of the competition we 

injected the complete fault at one instant. For example, if 3 

components are faulted, the first observation provided to the 

DA is the result of all three faults injected simultaneously. 

Table 3. ISCAS85 models (V and C denote the 

total number  of var iables and clauses, 

r espectively) 

 original reduced 

sys |IN| |OUT| |COMPS| V C |COMPS| 

74182 9 5 19 47 75 6 

74L85 11 3 33 77 118 15 

74283 9 5 36 81 122 14 

74181 14 8 65 144 228 15 

c432 36 7 160 356 1028 59 

c499 41 32 202 445 1428 58 

c880 60 26 383 826 2224 77 

c1355 41 32 546 1133 3220 58 

c1908 33 25 880 1793 4756 160 

c2670 233 140 1193 2695 6538 167 

c3540 50 22 1669 3388 9216 353 

c5315 178 123 2307 4792 13386 385 

c2688 32 32 2416 4684 14432 1456 

c7552 207 108 3512 7232 19312 545 

 

3. FAULT INJECTION AND SCENARIOS 

3.1 Industrial Track 

ADAPT supports the repeatable injection of faults into the 

system in one of three ways: 



 

 

     

 

Hardware-Induced Faults: These faults are physically 

injected at the testbed hardware. A simple example is tripping 

a circuit breaker using the manual throw bars. Another is 

using the power toggle switch to turn off the inverter. Faults 

may also be introduced in the loads attached to the EPS. For 

example, the valve can be closed slightly to vary the back 

pressure on the pump and reduce the flow rate. 

Software-Induced Faults: In addition to fault injection 

through hardware, faults may be introduced via software. 

Software fault injection includes one or more of the 

following: 1) sending commands to the testbed that were not 

intended for nominal operations; 2) blocking commands sent 

to the testbed; and 3) altering the testbed sensor data.  

Real Faults: In addition the aforementioned two methods, 

real faults may be injected into the system by using actual 

faulty components. A simple example includes a blown light 

bulb. This method of fault injection was not used in the first 

DX competition. 

In addition, the software architecture described in (Kurtoglu 

et al., 2009) allows the injection of multiple faults into the 

system. Distinct faults types that are injected into the testbed 

for the DX Competition are shown Table 4 and summarized 

in Table 5.  

Table 4. Fault types used for  the industr ial 

tr acks of DXC’09 

Component Fault Descr iption 

Battery Degraded 

Boolean Sensor Stuck at Value 

Circuit Breaker Tripped 

Failed Open 

Stuck Closed 

Inverter Failed Off 

Relay Stuck Open 

Stuck Closed 

Sensor Stuck at Value 

Offset 

Pump (Load) Flow Blocked 

Failed Off 

Fan (Load) Over Speed 

Under Speed 

Failed Off 

Light Bulb (Load) Failed Off 

As shown in Table 5, nominal scenarios comprise roughly 

half of the Tier 1 and one-third of the Tier 2 competition 

scenarios. The Tier 1 fault scenarios are limited to single 

faults. Half of the Tier 2 faults scenarios are single faults; the 

others are double or triple faults. For both tiers once faults are 

injected they persist until the end of the scenario. In the case 

of multiple faults, they may be injected simultaneously or 

sequentially. In the first year of the competition the fault 

types are limited to additive parametric (abrupt changes in 

parameter values) and discrete (unexpected changes in 

system state). 

Table 5. Number  of sample and competition 

scenar ios for  industr ial tr ack 

 Sample Competition 

#Scenar ios Tier 1 Tier 2 Tier 1 Tier 2 

Nominal 32 39 30 40 

Single-fault 27 54 32 40 

Double-fault 0 19 0 30 

Triple-fault 0 1 0 10 

 

3.2 Synthetic Track 

To present the scenario generation algorithm with the 

appropriate level of formality we need a number of 

definitions. 

Definition 1. (Diagnostic System). A diagnostic system DS is 

defined as the triple DS = ��SD, COMPS, OBS� , where SD is 

a propositional theory over a set of variables V , COMPS ⊂��
V, OBS ⊂��V, COMPS is the set of assumables, and OBS is 
the set of observables. 

We partition the set of observable variables OBS into inputs 

IN and outputs OUT such that OBS = IN ∪ OUT and IN ∩ 
OUT = ∅. 

Definition 2. (Diagnosis). Given a diagnostic system DS = 

��SD, COMPS, OBS� , an observation α  over some variables 

in OBS, and a health assignment ω , ω  is a diagnosis iff SD ∧��
α  ∧��ω  is consistent. 

Definition 3. (Minimal Diagnosis). A diagnosis ω  is minimal 

if no diagnosis ω ’��exists such that NL( ω ’) ⊂ NL( ω ), where 

NL( ψ ) is the set of negative literals in ψ . 

Definition 4. (Cardinality of a Diagnosis). The cardinality of 

a diagnosis, denoted as �^ω �,̂ is defined as the number of 

negative literals in ω . 

A minimal cardinality diagnosis is a minimal diagnosis, but 

the opposite does not hold. There are minimal diagnoses 

which are not minimal cardinality diagnoses. 

The purpose of Alg. 1 is to generate observations leading to 

diagnoses of increasing minimal cardinality. 

Algorithm 1: A greedy stochastic scenario generation 

algorithm 

    function MAKEALPHAS(DS, N ) returns set of terms 

  inputs: 
   DS = <SD, COMPS, OBS>, diag. system 

   OBS = IN ∪ OUT, IN ∩ OUT = ∅ 
   N, integer, observations per cardinality 

  local var iables: 
   α , β , α  n, fault, terms 

   i, c, integers, 

   R, set of terms, result, initially ∅ 
 1:  for  i = 1 ... N do 

 2:   α  ← RANDOMINPUTS(IN) 

 3:   β  ← COMPUTENOMINALOUTPUTS(DS, α ) 

 4:   c ← 0 



 

 

     

 

 5:   forall v ∈ OUT do 
 6:    α  n ← α  ^ FLIP (β , v) 

 7:    fault = MCFAULT(α  n) 

 8:    if |fault| > c then 

 9:     c ← |fault| 

 10:     R ←  R ∪ <fault, α  n> 
 11:    end if 

 12:   end for  

 13:  end for  

 14:  return R 

      end function 

Algorithm 1 uses a number of auxiliary functions. 

RANDOMINPUTS in line 2 assigns uniformly distributed 

random values to each input. Given the “all healthy” 

assignment, and the diagnostic system, 

COMPUTENOMINALOUTPUTS (line 3) propagates the inputs α  

and computes values for each output variable in OUT. The 

loop in lines 5 – 12 increases the cardinality by greedily 

flipping the values of the output variables. For each new 

candidate observation α n, Alg. 1 uses the diagnostic oracle 

MCFAULT in line 7 to compute the minimal cardinality of the 

diagnosis resulting from α n. If the cardinality of the diagnosis 

increases, the observation and the diagnoses are added to the 

result set (line 10). 

By running Alg. 1 we get up to N observations leading to 

faults of cardinality 1, 2, ..., n, where n is the cardinality of 

the MFMC diagnosis for the respective circuit. Alg. 1 clearly 

shows a bootstrapping problem. In order to create “difficult” 

scenarios for a DA we need the DA (in line 7) to be able to 

solve those “difficult” scenarios. To overcome this problem 

we have used subset-minimal diagnoses instead of MC 

diagnoses. Our approach is similar to (Feldman et al., 2008). 

4. EVALUATION METRICS 

A set of 9 metrics has been defined for assessing the 

performance of the diagnostic algorithms. For DXC we make 

a distinction between temporal, technical, and computational 

performance metrics. The temporal metrics measure how 

quickly an algorithm responds to faults in a physical system. 

The technical metrics measure non-temporal features of a 

diagnostic algorithm including accuracy and diagnostic 

cost/utility. Finally, computational metrics are intended to 

measure how efficiently an algorithm uses the available 

computational resources.  

In addition, we divide the metrics into 2 main categories:  

Detection metrics which deal with temporal, technical, and 

computational metrics associated with only detection of the 

fault. 

Isolation metrics which deal with temporal, technical, and 

computational metrics associated with isolation of the fault. 

The 9 metrics are listed in Table 6. The notation used for the 

definition of the metrics is as follows: 

 

Table 6. Metr ics summary 

Symbol       Name   Descr iption Class/Category/ 

Tracks Used 

“Per System Description” Metrics 

MFPR False 

Positives 

Rate 

Spurious 

faults rate 

Technical / 

Detection/I 

MFNR False 

Negatives 

Rate 

Missed faults 

rate 

Technical / 

Detection/I 

MFDA Detection 

Accuracy 

Correctness 

of the 

detection 

Technical / 

Detection/I 

“Per Scenario” Metrics 

Mfd Fault 

Detection 

Time 

Time for 

detecting a 

fault 

Temporal / 

Detection/I,S 

Mfi Fault 

Isolation 

Time 

Time for last 

persistent 

diagnosis 

Temporal / 

Isolation/I,S 

Mia Classification 

Errors 

Number of 

mode 

classification 

errors 

Technical / 

Isolation/I 

Mutl Diagnostic 

Utility 

Cost related 

to component 

replacements 

due to 

incorrect 

diagnosis 

Technical / 

Isolation/S 

Mcpu CPU        

Load 

CPU time    

spent 

Computational / 

Detection & 

Isolation/I,S 

Mmem Memory   

Load 

Memory 

allocated 

Computational / 

Detection & 

Isolation/I,S 

 

S – The set of scenarios for a given system description  

Sn – The set of nominal scenarios for a given system 

description 

Sf – The set of faulty scenarios for a given system description 

tfd – The time when the fault detection signal has been 

asserted for the first time 

tfi – The time when the last persistent fault isolation signal has 

been asserted 

ω act – The true component mode vector (ground truth) 



 

 

     

 

ω pre – The predicted component mode vector (represents the 

set of candidate diagnoses by the DA) 

Td – Total computation time 

Md – Peak amount of allocated memory 

C – All possibly faulted components 

D – Faulted components in ω pre. 

I – Faulted components in ω act. 

Finally, using the aforementioned notation, the 9 metrics are 

defined as: 

M fd – Fault Detection Time: The reaction time for a 

diagnostic engine in detecting an anomaly (Kurtoglu et al., 

2008). 

M fd = t fd       (1) 

M fi – Fault Isolation Time: The time for isolating a fault 

(Kurtoglu et al., 2008). In many applications this metric is less 

important than the diagnostic accuracy, but it is important in 

sequential diagnosis, probing, etc. 

M fi = t fi       (2) 

MFPR – False Positive Rate: The metric that penalizes 

diagnostic algorithms which announce spurious faults 

(Kurtoglu et al., 2008). The false positive rate is defined as: 

MFPR =

m fp (s)
s∈S

∑

S

      (3) 

where for each scenario s the “false positive" function mfp(s) 

is defined as: 

mfp (s) =
1,  if t fd < tinj

0,  otherwise

 
 
 

where tinj = ∞ for a nominal scenario

   (4) 

MFNR – False Negative Rate:  The metric that measures the 

ratio of missed faults by a diagnostic algorithm (Kurtoglu et 

al., 2008). 

MFNR =

mfn (s)
s∈S f

∑

Sf

     (5) 

where for each scenario s the “false negative" function mfn(s) 

is defined as: 

m fn (s) =
1, if t fd = ∞

0, otherwise

 
 
     (6) 

MFDA – Detection Accuracy: The fault detection accuracy is 

the ratio of number of correctly classified cases to the total 

number of cases (Kurtoglu et al., 2008). It is defined as: 

M FDA = 1−

m fp (s) + m fn (s)
s∈S

∑

S

   (7) 

M ia – Classification Errors: Isolation classification error 

metric measures the accuracy of the fault isolation by a 

diagnostic algorithm and is defined as the Hamming distance 

between the true component mode vector ω act and the 

predicted component mode vector ω pre.
3
 

In the calculation of the classification error metric, the data 

values for the Hamming distance are the respective modes of 

components comprising a system description. For example, if 

the true component mode vector of the system is [1,0,0,1,0] 

and the predicted component mode vector is [1,1,0,0,0], the 

classification error is 2. If more than one predicted mode 

vector is reported by a DA, (meaning that the diagnostic 

output consists of a set of candidate diagnoses), then the 

classification error is calculated for each predicted component 

mode vector and weighted by candidate probabilities reported 

by the DA. 

Mutl – Diagnostic Utility: The intuition behind the metric is to 

charge a DA for every incorrect component replacement it 

required to restore the circuit to functioning. For example, the 

correct diagnosis should always receive a perfect score. The 

diagnosis all components bad has a cost of the number of 

components. Consider a single fault and the DA reports all 

components good. Finding the faulty component would 

require on average replacing component by component until 

the system was functioning correctly (on average half the 

components). More generally: 

� � � �
� � � � � 	 
 � � � � � �  � 
 � � � � � � � � � � � � � � � � �    (8) 

Where c(n,m) is defined as the expected number of trials 

needed to isolate n out of m. If n is much smaller than m, then 

it is approximately: 

  
 � � � � � � � � � � � � � 
 � � � � � �     (9) 

For example, to find 1 fault in m has cost m/2. To find 2 faults 

in m is 2m/3. Similarly to the classification metric, if more 

than one predicted mode vector is reported by a DA, then 

error is calculated for each predicted component mode vector 

and weighted by candidate probabilities reported by the DA. 

Mcpu – CPU Load: This is the average CPU load during the 

experiment 

MCPU = ts + q
q∈Td

∑     (10) 

where ts is the startup time of the diagnostic engine and Td is 

a vector with the actual CPU time spent by the diagnostic 

algorithm at every time step in the diagnostic session. 

Mmem – Memory Load: This is the maximum memory size at 

every step in the diagnostic session. CPU load during the 

experiment 

Mmem = maxm
m∈Md

     (11) 

where Md is a vector with the maximum memory size at every 

step in the diagnostic session. 

 

                                                
3 The Hamming distance between two strings of data values 

(of equal length) is the number of positions for which the 

corresponding data values are different. 



 

 

     

 

5. COMPETITION SETUP AND SCORING 

Version 1.1 of the DXC Framework, implemented as 

specified in (Kurtoglu et al., 2009), was used to run the 

competition. Two computers with identical hardware
4
 were 

set up, one running Windows™ and the other Linux. The 

choice of target operating system was left to DA developers. 

System profiling was performed on the machines over a 

period of days to ensure stable experiment conditions. 

DAs were run on competition datasets over a period of two 

weeks. The Evaluator was then run on the full results set, 

assigning relative rankings for each metric. Since there were 

multiple systems in the Synthetic Track, the metrics 

computed for each system were aggregated before assigning 

relative rankings. The per scenario metrics were averaged 

over all scenarios and aggregated over all systems. For each 

of the Industrial track tiers there was only one system, so no 

aggregation was necessary. 

A DA that ranked first place in a given metric was awarded 

10 points, second place was awarded 8, third 7, etc. This 

score was then multiplied by a metric weight, shown in 

Tables 8, 9, and 10, and added to the DA’s total.  

Metric weights for the Industrial Track were determined by 

considering a number of use cases in which the importance of 

each metric was subjectively assessed. For example, in an 

abort use case high importance was given to the mean time to 

detect a fault whereas in a maintenance use case more weight 

was given to the ability to isolate a fault. Similar 

considerations were given to use cases such as real-time 

recovery and control, ground support operations, and 

resource limited applications. Since a use case was not 

specified as part of the competition scenarios, we simply 

averaged over all of the use cases to arrive at the final metric 

weights.    

6. DIAGNOSTIC ALGORITHMS 

The teams that participated in the First International Diagnosis 

Competition are listed in Table 7.  

Table 7. DXC par ticipating DAs 

Team Name Track(s) Algor ithm Type 

FACT I1 Model-based 

Fault Buster I1, I2 Statistical 

HyDE-A I1, I2 Model-based 

HyDE-S I1 Model-based 

Lydia S Model-based 

NGDE S Model-based 

ProADAPT I1, I2 Probabilistic 

RacerX I1 Change detection 

RODON I1, I2, S Model-based 

RulesRule I1 Rule-based 

StanfordDA I2 Optimization 

Wizards of Oz I1, I2 Model-based 

                                                
4
 Intel

®
 XEON™ 2x2.20Ghz, 3.60 GB RAM 

A total of twelve DAs participated, nine in Tier 1 of the 

Industrial Track, six in Tier 2, and three in the Synthetic 

Track. Brief descriptions of each of these algorithms are 

provided below: 

1. FACT – a model-based diagnosis system that uses hybrid 

bond graphs, and models derived from them, at all levels 

of diagnosis, including fault detection, isolation, and 

identification. Faults are detected using an observer-based 

approach with statistical techniques for robust detection. 

Faults are isolated by matching qualitative deviations 

caused by fault transients to those predicted by the model. 

For systems with few operating configurations, fault 

isolation is implemented in a compiled form to improve 

performance (Roychoudhury et al., 2009). 

2. Fault Buster – is based on a combination of multivariate 

statistical methods, for the generation of residuals. Once 

the detection has been done a neural 

network performs classification for doing isolation. 

3. HyDE-A – HyDE (Hybrid Diagnosis Engine) is a model-

based diagnosis engine that uses consistency between 

model predictions and observations to generate conflicts 

which in turn drive the search for new fault candidates. 

HyDE-A uses discrete models of the system and a 

discretization of the sensor observations for diagnosis 

(Narasimhan and Brownston, 2007). 

4. HyDE-S – uses the HyDE system but runs it on interval 

values hybrid models and the raw sensor data 

(Narasimhan and Brownston, 2007). 

5. Lydia – is a declarative modeling language specifically 

developed for Model-Based Diagnosis (MBD). The 

language core is propositional logic, enhanced with a 

number of syntactic extensions for ease of modeling. The 

accompanying toolset currently comprises a number of 

diagnostic engines and a simulator tool (Feldman et al., 

2006). 

6. NGDE – Allegro Common Lisp implementation of the 

classic GDE. Uses a minimum-cardinality candidate 

generator to construct diagnoses for the competition. 

7. ProADAPT – processes all incoming environment data 

(observations from a system being diagnosed), and acts as 

a gateway to a probabilistic inference engine. It uses the 

Arithmetic Circuit (AC) Evaluator which is compiled 

from Bayesian network models. The primary advantage 

to using ACs is speed, which is key in resource bounded 

environments (Mengshoel 2007). 

8. RacerX – is a detection-only algorithm which detects a 

percentage change in individual filtered sensor values to 

raise a fault detection flag. 

9. RODON – is based on the principles of the General 

Diagnostic Engine (GDE) as described by de Kleer and 

Williams and the G+DE by Heller and Struss. RODON 

uses contradictions (conflicts) between the simulated and 

the observed behavior to generate hypotheses about 

possible causes for the observed behavior. If the model 

contains failure modes besides the nominal behavior, 

these can be used to verify the hypotheses, which speed 



 

 

     

 

up the diagnostic process and improve the results (Karin 

et al., 2006). 

10. RulesRule – is a rule-based isolation-only algorithm. The 

rule base was developed by analyzing the sample data and 

determining characteristic features of fault. There is no 

explicit fault detection though isolation implicitly means 

that a fault has been detected. 

11. StanfordDA – is an optimization-based approach to 

estimating fault states in a DC power system. The model 

includes faults changing the circuit topology along with 

sensor faults. The approach can be considered as a 

relaxation of the mixed estimation problem. We develop a 

linear model of the circuit and pose a convex problem for 

estimating the faults and other hidden states. A sparse 

fault vector solution is computed by using l1 

regularization (Zymnis et al., 2009). 

12. Wizards of Oz – is a consistency-based algorithm. The 

model of the system completely defines the stable (static) 

output of the system in case of normal and faulty 

behavior. Given a new command or new observations, the 

algorithm waits for a stable state and computes the 

minimum diagnoses consistent with the observations and 

the previous diagnoses. 

7. RESULTS AND DISCUSSION 

7.1 Industrial Track  

The results for the Industrial Track are shown in Table 8 and 

Table 9 for Tier 1 and Tier 2, respectively. The overall winner 

for both tracks was ProADAPT. RODON placed second in 

Tier 1 and third in Tier 2. The StanfordDA, which did not 

participate in Tier 1, placed second in Tier 2. However, 

ProADAPT and StanfordDA benefitted from previous funded 

experience with ADAPT so RODON was the official winner 

of both tiers. The distribution of first or second ranks within 

each metric was spread out among the DAs, no DA ranked 

first or second for all of the metrics. Note that the final scores 

and ranks depend on the weights applied to each metric. 

Different weights, corresponding to different use cases, would 

affect the results. The sensitivity of the results to the metrics 

and weights is left for future study.  

Figures 2-9 are graphical depictions of the data in Tables 8 

and 9. A few observation follow. False positives were counted 

in the following two situations: for nominal scenarios where 

the DA declared a fault; and for faulty scenarios where the 

DA declared a fault before any fault was injected. An error in 

the rule base of RulesRule led to more false positive 

indications for the faulty scenarios than for the nominal 

scenarios and also resulted in a large number of classification 

errors. For other DAs, false positives also resulted from 

nominal commanded mode changes in Tier 2 in which the 

relay feedback did not change status as of the next data 

sample after the command. Here is an extract from one of the 

input scenario files that illustrates this situation:   

command @120950 EY275_CL = false; 

sensors @121001 {… ESH275 = true, …} 

sensors @121501 {… ESH275 = false, …} 

A command is given at 120.95 seconds to open relay EY275. 

The associated relay position sensor does not indicate open as 

of the next sensor data update 51 milliseconds later. This is 

nominal behavior for the system and examples were provided 

in the sample data. A DA that does not account for this delay 

will likely indicate a false positive in this case.  

In several instances DAs reported diagnosis mode IDs which 

did not match the names specified in the system catalog. For 

these cases the diagnosis was treated as an empty candidate. 

Table 8. Industr ial tr ack tier  1 results 

  W eight R O D O N  

W izards 

O f O z 

Fault 

Buster ProA D A PT 

H yD E-

A  

H yD E-

S R ulesR ule FACT R acerX 

FP R ate 1.3 0.0645 0.0000 0.1333 0.0333 0.0000 0.2000 0.8246 0.2813 0.0645 

  Ranking   4 1 6 3 1 7 9 8 4 

Points   6 9 4 7 9 3 1 2 6 

FN  R ate 1.3 0.0968 0.5000 0.3438 0.0313 0.4688 0.0741 0.0000 0.0667 0.1613 

Ranking   5 9 7 2 8 4 1 3 6 

Points   5 1 3 8 2 6 10 7 4 

D et A cc 0.3 0.9194 0.7419 0.7581 0.9677 0.7581 0.8548 0.2419 0.8226 0.8871 

    Ranking   2 8 6 1 6 4 9 5 3 

Points   8 2 3.5 10 3.5 6 1 5 7 

Class Errors 2.2 10.000 24.000 32.000 2.000 26.649 26.000 76.000 25.000 32.000 

    Ranking   2 3 7 1 6 5 9 4 7 

Points   8 7 2.5 10 4 5 1 6 2.5 

T_det (m s) 2.2 218 11530 1893 1392 13223 130 1000 373 126 

    Ranking   3 8 7 6 9 2 5 4 1 

Points   7 2 3 4 1 8 5 6 10 

T_iso (m s) 1.5 7205 11626 9259 4084 13840 653 282 9796 999999 

    Ranking   4 7 5 3 8 2 1 6 9 

Points   6 3 5 7 2 8 10 4 1 

CPU  (m s) 0.6 11766 1039 2039 1601 24795 513 117 1767 139 

    Ranking   8 4 7 5 9 3 1 6 2 

Points   2 6 3 5 1 7 10 4 8 

M em  (kb) 0.6 26679 1781 2539 1680 5447 5795 3788 4340 3572 

     Ranking   9 2 3 1 7 8 5 6 4 

Points   1 8 7 10 3 2 5 4 6 

FIN A L 

SCO R ES:   59.850 46.300 35.750 72.800 31.750 59.500 51.800 50.400 51.850 

FIN A L 

R AN K:   2 7 8 1 9 3 5 6 4 

 



 

 

     

 

This could either negatively or positively impact the 

classification error metric depending on whether the DA had a 

correct or incorrect isolation. Participants were encouraged to 

run their DA output through the evaluator code that was 

distributed with the sample data sets to check for and correct 

these syntax errors.   

There are a few remarks in regards to the timing metrics listed 

in Table 6 and shown graphically in Fig. 4. First, RacerX did 

not have an isolation time as it was a detection-only DA. 

Second, note the somewhat confusing result that the mean 

isolation time for RulesRule was less than the mean detection 

time. This has to do with the way the metrics are calculated. 

The detection time is undefined for scenarios with a false 

positive; however, the isolation time is not necessarily 

undefined and is calculated as discussed in section 4. The 

intent is to account for the situation where a DA retracts a 

spurious detection signal and subsequently isolates to the 

correct component. In this case the scenario is declared a false 

positive but the accuracy and timing of the isolation is 

calculated with respect to the last persistent diagnosis. 

Consequently, for DAs with many false positives the detection 

time may be calculated for fewer scenarios than the isolation 

time with the result that the mean isolation time for all 

scenarios could be less than the mean detection time. 

However, in any scenario where both times are defined, the 

DA isolation time is always greater than or equal to the 

detection time, as would be expected. 

Tier 1 had the interesting circumstance that the same DA was 

implemented by two different modelers. HyDE-A was 

modeled primarily with Tier 2 in mind and had a policy of 

waiting for transients to settle before requesting a diagnosis. 

The same policy was simply applied to Tier 1 as well, even 

though transients in Tier 1 corresponded strictly to fault 

events. On the other hand, HyDE-S was modeled only for Tier 

1 and did not include a lengthy time-out period for transients 

to settle. HyDE-S had dramatically smaller mean detection 

and isolation times (see Fig. 4) with roughly the same number 

of classification errors (Fig. 3) as HyDE-A. This illustrates the 

kind of impact that modeling and implementation decisions 

have on DA performance.  

7.2 Synthetic Track  

As can be seen in Table 7 all synthetic track DAs are model-

based. Lydia uses a stochastic approach to identify diagnoses 

while RODON and NGDE use the familiar GDE-like 

approaches.  Their overall utility scores are not dramatically 

different. 

The results for the Synthetic Track are presented in Table 10. 

Based on the overall metric NGDE was first, Lydia second, 

and RODON third.  Lydia was used to generate the scenario 

sets and therefore is disqualified. Furthermore the designers 

of Lydia and NGDE both participated in the design of DXC, 

and are thus disqualified.  So RODON is the official winner.  

RODON scored reasonably well on the smaller circuits but 

failed to return any diagnoses for the 4 larger circuits. 

Use of computational resources varied dramatically over the 

systems. Lydia used an order of magnitude fewer resources 

than either RODON or NGDE and thus ranked first along the 

memory and CPU metrics.  RODON and NGDE are very 

similar in resource usage, with RODON edging out NGDE. 

Fig. 10 shows the DA utility for each of the circuits.  Note 

that the utility score decreases significantly with circuit size.   

This decrease is not a result of poor performance or algorithm 

design.  Rather, an oracle could not do much better as a large 

Table 9. Industr ial tr ack tier  2 results 

  W eight R O D O N  

W izards 

O f O z 

Fault 

Buster ProA D A PT H yD E Stanford 

FP R ate 1.3 0.5417 0.5106 0.8143 0.0732 0.0000 0.3256 

  Ranking   5 4 6 2 1 3 

Points   5 6 4 8 10 7 

FN  R ate 1.3 0.0972 0.0959 0.2400 0.1392 0.3000 0.0519 

Ranking   3 2 5 4 6 1 

Points   7 8 5 6 4 10 

D et A cc 0.3 0.7250 0.7417 0.4250 0.8833 0.8000 0.8500 

    Ranking   5 4 6 1 3 2 

Points   5 6 4 10 7 8 

Class Errors 2.2 84.067 159.248 130.000 76.000 121.569 110.547 

    Ranking   2 6 5 1 4 3 

Points   8 4 5 10 6 7 

T_det (m s) 2.2 3490 30742 14099 5981 17610 3946 

    Ranking   1 6 4 3 5 2 

Points   10 4 6 7 5 8 

T_iso (m s) 1.5 36331 47625 37808 12486 21982 14103 

    Ranking   4 6 5 1 3 2 

Points   6 4 5 10 7 8 

CPU  (m s) 0.6 80261 23387 5798 3416 29612 963 

    Ranking   6 4 3 2 5 1 

Points   4 6 7 8 5 10 

M em  (kb) 0.6 29878 7498 10261 6539 20515 5912 

     Ranking   6 3 4 2 5 1 

Points   4 7 6 8 5 10 

FIN A L 

SCO R ES:   70.500 51.400 52.400 83.200 61.000 81.500 

FIN A L 

R AN K:   3 6 5 1 4 2 

 



 

 

     

 

number of faults can exhibit the same input-output  behavior 

and no DA could isolate the injected fault out of the large 

ambiguity groups.  The challenge presented by large 

ambiguity groups is discussed further in the following section 

and the NGDE and Lydia papers included in this collection. 

8. ASSUMPTIONS, ISSUES, AND EXTENSIONS 

The primary goal of this competition was to demonstrate an 

end-to-end implementation of the DXC framework and create 

a foundation for future DX competitions. As a result we made 

several simplifying assumptions. We also ran into several 

issues during the course of this implementation that could not 

be addressed. In this section, we try to present those 

assumptions and issues, which we hope can be addressed in 

future competitions.  

Although the competition was a success, it only addresses a 

small set of the types of diagnostic tasks, which occur in 

practice. It would be unfortunate for the DX community to 

focus only on the tasks of this competition. Our goal is to 

continually expand the coverage of diagnostic challenges 

experienced in the field. Our hope is that every successive 

year will expand the set of tasks in the competition and in 

doing so produce an ever growing repository DX researchers 

have available to evaluate their own algorithms. 

8.1 Competition Scope 

In the first year of the diagnostic competition, the fault 

signatures were limited to abrupt parametric and discrete 

types. Faults were inserted assuming uniform probabilities 

and included component and sensor faults. In future years, we 

will provide the failure rates of components and use these to 

evaluate the precision of diagnoses. For the Industrial Track, 

other fault types are presently possible to inject in the testbed 

– including incipient, intermittent, and noise – and could be 

included in future work. Additional ideas for future research 

include giving DAs reduced sensor sets, introducing multi-

rate sensor data, injecting transient faults, allowing for 

autonomous transitions, adding variable loads, and extending 

the scope and complexity of the physical system. For the 

synthetic track, all the systems were known a priori. This 

means researchers could optimize for these circuits. We don’t 

believe this happened this year, but to avoid this in future 

years we will include entirely novel circuits along with the 

familiar ones. This year we sampled only one observation 

time. We will provide multiple observations. This will 

evaluate a DAs ability to merge information from multiple 

times. An important component of troubleshooting is 

introducing probe points. In future years, we can evaluate the 

number of probes needed to isolate the fault. This year the 

input vector was supplied. The diagnostician could construct 

the input vector, which was most informative. This year the 

Synthetic Track focused on combinatorial circuits. In 

subsequent years we hope to introduce troubleshooting of 

sequential circuits. Finally, digital circuits are convenient to 

model and conveniently illustrate many aspects of diagnostic 

algorithms. In future years, we will extend the types of 

systems to include. Two comparatively easy types of systems 

to add are reprographic engines as we have a tool available to 

Table 10. Synthetic tr ack results 

    Lydia NGDE RODON 

circuit #comp cpu mem utl cpu mem utl cpu mem utl 

74182 19 51 154 0.4137 6335 11540 0.4793 3043 19773 0.4448 

74L85 33 68 223 0.2433 6365 11784 0.3098 3888 20979 0.1952 

74283 36 60 229 0.1580 6385 12231 0.1553 5351 20637 0.1147 

74181 65 64 401 0.1504 6619 14625 0.1931 12527 25432 0.1417 

c432 160 115 878 0.0871 7520 17868 0.2096 22621 36811 0.0906 

c499 202 130 1094 0.0622 20347 32649 0.0699 23504 39872 0.0089 

c880 383 203 1945 0.0483 13718 28622 0.0401 20347 43687 0.0182 

c1355 546 296 2759 0.0295 22550 37930 0.0246 23253 33530 0.0012 

c1908 880 538 4134 0.0179 26171 39843 0.0150 27718 38557 0.0180 

c2670 1193 937 5867 0.0647 20537 61722 0.1076 35680 43063 0.0442 

c3540 1669 1674 7900 0.0319 27022 82045 0.0407 0 0 0.0000 

c5315 2307 3091 11316 0.0165 30926 93116 0.0275 0 0 0.0000 

c6288 2416 3530 12037 0.0008 17483 102420 0.0563 0 0 0.0000 

c7552 3512 11817 16679 0.0317 37989 125910 0.0283 0 0 0.0000 

Averaged 1613 4687 0.0969 17855 48022 0.1255 12709 23024 0.0770 

Per Metric Rank 1 1 2 3 3 1 2 2 3 

Points 10 10 8 7 7 10 8 8 7 

Metric Weight 1.5 1.5 7 1.5 1.5 7 1.5 1.5 7 

Final Scores  86   91   73  

Final Rank  2   1   3  

 



 

 

     

 

generate such models, and analog circuits. 

8.2 Metrics 

Selecting the set of metrics to be used for evaluation was a 

challenging job. We based our decision on the system and 

kinds of faults we were dealing with. In reality we also need 

to design metrics more closely associated with the context of 

use. One common metric is to minimize total cost of repair 

where cost includes down time to the customer, 

diagnostician’s time, parts, etc. In addition since we were 

dealing with abrupt, persistent, and discrete faults, metrics 

associated with incipient, intermittent, and/or continuous 

faults were not considered. The metrics listed in this paper do 

not capture the amount of effort necessary to build models of 

sufficient fidelity for the diagnosis task at hand. Furthermore, 

we did not attempt to investigate the ease or difficulty of 

updating models with new or changed system information. 

The art of building models is an important practical 

consideration which is not addressed in the current work.  

The isolation accuracy metric used for the industrial track was 

not suitable for the synthetic track. A DA which reported 

nothing wrong on every scenario would come close to 

winning the competition based on this metric. The main 

problem with this metric is that the number of faulty 

components is always small with respect to the size of the 

system. As a result we cannot differentiate adequately 

between a few faults and no faults. 

Isolation classification error was also not suitable for the 

synthetic track.  This metric still suffers from the problem that 

all good is scored too high:  The Hamming distance between a 

single fault and every component good is very small! 

Ideally we would like to use a SAT solver to evaluate the 

accuracy of a DA’s diagnosis. However, we did not have time 

to implement it so as an alternate we selected utility as the 

isolation accuracy metric for the synthetic track. One of the 

major flaws of this metric is that average expected utility 

scores decrease with system size, thereby implicitly de-

weighting diagnoses of larger circuits. We also considered and 

rejected a classification error metric which would assign a 

high score to any fault from an ambiguity group which we 

considered a bigger flaw than the flaw for the utility metric. 

Finally, the current isolation metrics evaluate diagnostic 

performance based on a discrete isolation assumption in 

which faults are isolated to one of the discrete modes of a 

component. As more continuous type faults are introduced, 

additional or generalized metrics are required in order to 

calculate the accuracy of isolation estimates on a continuous 

scale. 

8.3 Competition Setup 

Some practical issues arose in the execution of competition 

experiments. Much effort was put into ensuring stable, 

uniform conditions on the host machines; however, due to 

time constraints and the unpredictable element introduced by 

running external DA submissions, it was necessary to take 

measures that may have caused slight variability. One 

example was the manual examination of ongoing experiment 

results for quality assurance. Future releases of the DXC 

Framework can address this by being more robust to 

unexpected DA behavior, and sending email notifications in 

the event of such. 

Additionally, for Java DAs, significant differences were 

evident in the peak memory usage metric when run on Linux 

versus Windows™. The cause for this was not explored due to 

time constraints, as the method used on Windows™ for 

calculating peak memory usage involved a Windows™ API 

system call, the analysis of which was deemed too expensive. 

The problem was bypassed by running all Java DAs on Linux. 

This worked for all save one, RODON. When it was 

determined that any change in RODON’s peak memory usage 

score would not affect the final rankings in any way, the issue 

was waived. 

9. CONCLUSIONS 

We presented the successful implementation of the DXC 

framework called DXC’09. We learned some valuable lessons 

trying to run this competition. One major takeaway is that 

there is still a lot of work and discussion needed to determine 

common comparison and evaluation framework for the 

diagnosis community.  

We hope to continue the work next year by running DXC’10. 

We have identified several ways to extend the systems used in 

the current competition some of which can be achieved in a 

year’s time. We also hope to add other systems to the fold, 

which may pose different diagnostic challenges. 
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Appendix A. FIGURES. 

 

 

 

 

 

 

Fig. 1. The ADAPT EPS (Electrical Power System) 



 

 

     

 

Fig. 2. Industrial track tier 1 false positive rate, false 

negative rate, and detection accuracy by DA 

 

       

 

 

 

Fig. 3. Industrial track tier 1 classification errors by DA 

 

Fig. 4. Industrial track tier 1 detection and isolation times 

by DA 

Fig. 5. Industrial track tier 1 CPU time and peak memory 

usage by DA 

 

Fig. 6. Industrial track tier 2 false positive rate, false 

negative rate, and detection accuracy by DA 

 

 

Fig. 7. Industrial track tier 2 classification errors by DA 



 

 

     

 

 

 

Fig. 8. Industrial track tier 2 detection and isolation 

times by DA 

 

 

Fig. 9. Industrial track tier 2 CPU time and peak 

memory usage by DA 

 

Fig. 10. Synthetic track DA utility scores by circuit 

 


