

First International Diagnosis Competition – DXC’09

Tolga Kur toglu*, Sr ir am Narasimhan**, Scott Poll***, David Garcia****, Lukas Kuhn
†
,

Johan de Kleer †, Ar jan van Gemund‡, Alexander Feldman†,‡

* Mission Critical Technologies @ NASA Ames Research Center

** University of California, Santa Cruz @ NASA Ames Research Center

*** NASA Ames Research Center

**** Stinger Ghaffarian Technologies @ NASA Ames Research Center
†
 Palo Alto Research Center

‡
 Delft University of Technology

Abstract: A framework to compare and evaluate diagnosis algorithms (DAs) has been created jointly by

NASA Ames Research Center and PARC. In this paper, we present the first concrete implementation of

this framework as a competition called DXC’09. The goal of this competition was to evaluate and compare

DAs in a common platform and to determine a winner based on diagnosis results. 12 DAs (model-based

and otherwise) competed in this first year of the competition in 3 tracks that included industrial and

synthetic systems. Specifically, the participants provided algorithms that communicated with the run-time

architecture to receive scenario data and return diagnostic results. These algorithms were run on extended

scenario data sets (different from sample set) to compute a set of pre-defined metrics. A ranking scheme

based on weighted metrics was used to declare winners. This paper presents the systems used in DXC’09,

description of faults and data sets, a listing of participating DAs, the metrics and results computed from

running the DAs, and a superficial analysis of the results.

1. INTRODUCTION

The DX community meets every year at the International

Workshop on the Principles of Diagnosis
1
 to discuss the latest

developments in the field of model-based diagnosis. Various

diagnostic modeling approaches, associated reasoning

algorithms, and applications to real and toy systems are

presented. However, efforts to compare and evaluate

diagnosis algorithms (DAs) on a common platform have been

far and few in between. Other diagnosis communities have

also not been actively involved in creating such platforms.

There have been attempts to benchmark DAs by computing

performance metrics/indices (Orsagh et al., 2002, Bartys et

al., 2006, Simon, et al., 2008). However these approaches

were focused on specific domains and lack a general-purpose

representation. In an effort to bridge this gap a framework

called the DXC framework (Kurtoglu et al., 2009) was created

to provide a level playing field to evaluate and compare DAs.

This framework tried to establish a general purpose

representation for system description, scenario data format,

and diagnostic result format. A run-time architecture was

created to execute DAs under similar conditions and compute

performance metrics based on diagnostic output and ground-

truth data.

In this paper, we present the first concrete implementation of

the DXC framework called the DX Competition
2
 (DXC’09).

12 DAs (model-based and otherwise) competed in 3 tracks

that included industrial and synthetic systems. Initially the

1
 http://www.isy.liu.se/dx09/
2
 http://dx-competition.org/

participants were provided with system descriptions and a

sample data set that included nominal and fault scenarios. The

participants had to provide algorithms that communicated

with the run-time architecture to receive scenario data and

return diagnostic results. For the competition we ran all the

algorithms on extended scenario data sets (different from

sample set) to compute a set of pre-defined metrics. The

metrics (with associated weighting) were used to rank the

DAs.

The rest of this paper details the constituent pieces of this

competition. Section 2 describes the tracks and systems used

in the competition. Section 3 lists the classes of faults that

were injected, how they were injected, and the sensor data sets

that were generated as a result. Section 4 defines all the

metrics used in the competition. Section 5 describes the

conditions of the competition including information on how

the algorithms were started and executed. Section 6 lists and

briefly describes the participating DAs. Section 7 provides

results of the competition and an analysis of the performance

of the DAs. Section 8 introduces the assumptions that were

made in implementing this competition, issues that were

identified, and scope for possible extensions. Section 9

presents the conclusion and looks forward to the continuation

of this competition in future years.

2. TRACKS & SYSTEMS

One of the primary goals of DXC’09 is to facilitate the

development of domain independent diagnostic software.

Furthermore, diagnostic software should be stress tested with

difficult cases to determine its strengths and weaknesses and

to pose a challenge. A diagnostic problem may be interesting

due to its practical importance or it may be challenging due to

its size and complexity. To facilitate all this we included

multiple DXC tracks, and (optionally) multiple tiers in each

track. The DXC’09 tracks and tiers are summarized in Table

1.

Table 1. Tracks, systems, and tier s in DXC'09

Track Tier Systems Descr iption

Industrial

1 ADAPT-

Lite

Basic faults injected into a

simplified EPS (Electrical

Power System) testbed

2 ADAPT More complex faults

injected into the full EPS

distribution system

Synthetic 1 ISCAS85 Multiple faults injected into

the circuits from the

ISCAS85 benchmarks

2.1 Industrial Track

The hardware system for the DXC’09 Industrial Track is the

Electrical Power System testbed in the ADAPT lab at NASA

Ames Research Center (Poll et al., 2007). The ADAPT EPS

testbed provides a means for evaluating diagnostic algorithms

through the controlled insertion of faults in repeatable failure

scenarios. The EPS testbed incorporates low-cost commercial

off-the-shelf (COTS) components connected in a system

topology that provides the functions typical of aerospace

vehicle electrical power systems: energy conversion

/generation (battery chargers), energy storage (three sets of

lead-acid batteries), power distribution (two inverters, several

relays, circuit breakers, and loads) and power management

(command, control, and data acquisition). The EPS delivers

AC (Alternating Current) and DC (Direct Current) power to

loads, which in an aerospace vehicle could include subsystems

such as the avionics, propulsion, life support, environmental

controls, and science payloads. A data acquisition and control

system commands the testbed into different configurations

and records data from sensors that measure system variables

such as voltages, currents, temperatures, and switch positions.

The scope of the ADAPT EPS testbed used for DXC

Industrial Track is shown in Fig. 1. Tier 1 has the reduced

scope as indicated. The nomenclature in the figure is

consistent with the system description provided to all

participants, which provides component, connection, and

mode information. The characteristics of Tier 1 and Tier 2 are

summarized in Table 2. The greatest simplification of Tier 1

relative to Tier 2 is not the reduced size of the domain but the

elimination of nominal mode transitions. The starting

configuration for Tier 1 data has all relays and circuit breakers

closed and no nominal mode changes are commanded during

the scenarios. Hence, any noticeable changes in sensor values

may be correctly attributed to faults injected into the

scenarios. By contrast, the initial configuration for Tier 2 data

has all relays open and nominal mode changes are

commanded during the scenarios. The commanded

configuration changes result in adjustments to sensor values

as well as transients which are nominal and not indicative of

injected faults.

Table 2. Industr ial tr ack tier character istics

Aspect Tier 1 Tier 2

#Comps/Modes 37 / 93 173 / 430

Initial State Relays closed;

circuit breakers

closed

Relays open; circuit

breakers closed

Nominal mode

changes?

No Yes

2.2 Synthetic Track

For the synthetic track, we have used the well-known

benchmark models of ISCAS85 circuits (Brglez and

Fujiwara, 1985). These circuits are purely combinational, i.e.,

they contain no flip-flops or other memory elements. Note

that the high-level structure of the ISCAS85 circuits, which

can be beneficial to Model-Based Diagnosis (MBD) analysis,

has been flattened out. A reverse engineering effort had

resulted in high-level Verilog models (Hansen et al., 1999).

Table 3 summarizes the circuits used in the synthetic

DXC’09 track. Note that for many tasks of MBD (e.g.,

computing MFMC (Max-Fault Min-Cardinality) observations

(Feldman et al., 2008)), the number of components in the

ISCAS85 circuits can be reduced by performing cone

identification (Siddiqi and Huang, 2007, de Kleer, 2008). The

number of components in the reduced circuits is shown in the

rightmost column of Table 3. We have left the decision if to

identify cones to the competitors, i.e., we distribute the non-

reduced circuits. In this first year of the competition we

injected the complete fault at one instant. For example, if 3

components are faulted, the first observation provided to the

DA is the result of all three faults injected simultaneously.

Table 3. ISCAS85 models (V and C denote the

total number of var iables and clauses,

r espectively)

 original reduced

sys |IN| |OUT| |COMPS| V C |COMPS|

74182 9 5 19 47 75 6

74L85 11 3 33 77 118 15

74283 9 5 36 81 122 14

74181 14 8 65 144 228 15

c432 36 7 160 356 1028 59

c499 41 32 202 445 1428 58

c880 60 26 383 826 2224 77

c1355 41 32 546 1133 3220 58

c1908 33 25 880 1793 4756 160

c2670 233 140 1193 2695 6538 167

c3540 50 22 1669 3388 9216 353

c5315 178 123 2307 4792 13386 385

c2688 32 32 2416 4684 14432 1456

c7552 207 108 3512 7232 19312 545

3. FAULT INJECTION AND SCENARIOS

3.1 Industrial Track

ADAPT supports the repeatable injection of faults into the

system in one of three ways:

Hardware-Induced Faults: These faults are physically

injected at the testbed hardware. A simple example is tripping

a circuit breaker using the manual throw bars. Another is

using the power toggle switch to turn off the inverter. Faults

may also be introduced in the loads attached to the EPS. For

example, the valve can be closed slightly to vary the back

pressure on the pump and reduce the flow rate.

Software-Induced Faults: In addition to fault injection

through hardware, faults may be introduced via software.

Software fault injection includes one or more of the

following: 1) sending commands to the testbed that were not

intended for nominal operations; 2) blocking commands sent

to the testbed; and 3) altering the testbed sensor data.

Real Faults: In addition the aforementioned two methods,

real faults may be injected into the system by using actual

faulty components. A simple example includes a blown light

bulb. This method of fault injection was not used in the first

DX competition.

In addition, the software architecture described in (Kurtoglu

et al., 2009) allows the injection of multiple faults into the

system. Distinct faults types that are injected into the testbed

for the DX Competition are shown Table 4 and summarized

in Table 5.

Table 4. Fault types used for the industr ial

tr acks of DXC’09

Component Fault Descr iption

Battery Degraded

Boolean Sensor Stuck at Value

Circuit Breaker Tripped

Failed Open

Stuck Closed

Inverter Failed Off

Relay Stuck Open

Stuck Closed

Sensor Stuck at Value

Offset

Pump (Load) Flow Blocked

Failed Off

Fan (Load) Over Speed

Under Speed

Failed Off

Light Bulb (Load) Failed Off

As shown in Table 5, nominal scenarios comprise roughly

half of the Tier 1 and one-third of the Tier 2 competition

scenarios. The Tier 1 fault scenarios are limited to single

faults. Half of the Tier 2 faults scenarios are single faults; the

others are double or triple faults. For both tiers once faults are

injected they persist until the end of the scenario. In the case

of multiple faults, they may be injected simultaneously or

sequentially. In the first year of the competition the fault

types are limited to additive parametric (abrupt changes in

parameter values) and discrete (unexpected changes in

system state).

Table 5. Number of sample and competition

scenar ios for industr ial tr ack

 Sample Competition

#Scenar ios Tier 1 Tier 2 Tier 1 Tier 2

Nominal 32 39 30 40

Single-fault 27 54 32 40

Double-fault 0 19 0 30

Triple-fault 0 1 0 10

3.2 Synthetic Track

To present the scenario generation algorithm with the

appropriate level of formality we need a number of

definitions.

Definition 1. (Diagnostic System). A diagnostic system DS is

defined as the triple DS = ��SD, COMPS, OBS� , where SD is

a propositional theory over a set of variables V , COMPS ⊂��
V, OBS ⊂��V, COMPS is the set of assumables, and OBS is
the set of observables.

We partition the set of observable variables OBS into inputs

IN and outputs OUT such that OBS = IN ∪ OUT and IN ∩
OUT = ∅.

Definition 2. (Diagnosis). Given a diagnostic system DS =

��SD, COMPS, OBS� , an observation α over some variables

in OBS, and a health assignment ω , ω is a diagnosis iff SD ∧��
α ∧��ω is consistent.

Definition 3. (Minimal Diagnosis). A diagnosis ω is minimal

if no diagnosis ω ’��exists such that NL(ω ’) ⊂ NL(ω), where

NL(ψ) is the set of negative literals in ψ .

Definition 4. (Cardinality of a Diagnosis). The cardinality of

a diagnosis, denoted as �^ω �,̂ is defined as the number of

negative literals in ω .

A minimal cardinality diagnosis is a minimal diagnosis, but

the opposite does not hold. There are minimal diagnoses

which are not minimal cardinality diagnoses.

The purpose of Alg. 1 is to generate observations leading to

diagnoses of increasing minimal cardinality.

Algorithm 1: A greedy stochastic scenario generation

algorithm

 function MAKEALPHAS(DS, N) returns set of terms

 inputs:
 DS = <SD, COMPS, OBS>, diag. system

 OBS = IN ∪ OUT, IN ∩ OUT = ∅
 N, integer, observations per cardinality

 local var iables:
 α , β , α n, fault, terms

 i, c, integers,

 R, set of terms, result, initially ∅
 1: for i = 1 ... N do

 2: α ← RANDOMINPUTS(IN)

 3: β ← COMPUTENOMINALOUTPUTS(DS, α)

 4: c ← 0

 5: forall v ∈ OUT do
 6: α n ← α ^ FLIP (β , v)

 7: fault = MCFAULT(α n)

 8: if |fault| > c then

 9: c ← |fault|

 10: R ← R ∪ <fault, α n>
 11: end if

 12: end for

 13: end for

 14: return R

 end function

Algorithm 1 uses a number of auxiliary functions.

RANDOMINPUTS in line 2 assigns uniformly distributed

random values to each input. Given the “all healthy”

assignment, and the diagnostic system,

COMPUTENOMINALOUTPUTS (line 3) propagates the inputs α

and computes values for each output variable in OUT. The

loop in lines 5 – 12 increases the cardinality by greedily

flipping the values of the output variables. For each new

candidate observation α n, Alg. 1 uses the diagnostic oracle

MCFAULT in line 7 to compute the minimal cardinality of the

diagnosis resulting from α n. If the cardinality of the diagnosis

increases, the observation and the diagnoses are added to the

result set (line 10).

By running Alg. 1 we get up to N observations leading to

faults of cardinality 1, 2, ..., n, where n is the cardinality of

the MFMC diagnosis for the respective circuit. Alg. 1 clearly

shows a bootstrapping problem. In order to create “difficult”

scenarios for a DA we need the DA (in line 7) to be able to

solve those “difficult” scenarios. To overcome this problem

we have used subset-minimal diagnoses instead of MC

diagnoses. Our approach is similar to (Feldman et al., 2008).

4. EVALUATION METRICS

A set of 9 metrics has been defined for assessing the

performance of the diagnostic algorithms. For DXC we make

a distinction between temporal, technical, and computational

performance metrics. The temporal metrics measure how

quickly an algorithm responds to faults in a physical system.

The technical metrics measure non-temporal features of a

diagnostic algorithm including accuracy and diagnostic

cost/utility. Finally, computational metrics are intended to

measure how efficiently an algorithm uses the available

computational resources.

In addition, we divide the metrics into 2 main categories:

Detection metrics which deal with temporal, technical, and

computational metrics associated with only detection of the

fault.

Isolation metrics which deal with temporal, technical, and

computational metrics associated with isolation of the fault.

The 9 metrics are listed in Table 6. The notation used for the

definition of the metrics is as follows:

Table 6. Metr ics summary

Symbol Name Descr iption Class/Category/

Tracks Used

“Per System Description” Metrics

MFPR False

Positives

Rate

Spurious

faults rate

Technical /

Detection/I

MFNR False

Negatives

Rate

Missed faults

rate

Technical /

Detection/I

MFDA Detection

Accuracy

Correctness

of the

detection

Technical /

Detection/I

“Per Scenario” Metrics

Mfd Fault

Detection

Time

Time for

detecting a

fault

Temporal /

Detection/I,S

Mfi Fault

Isolation

Time

Time for last

persistent

diagnosis

Temporal /

Isolation/I,S

Mia Classification

Errors

Number of

mode

classification

errors

Technical /

Isolation/I

Mutl Diagnostic

Utility

Cost related

to component

replacements

due to

incorrect

diagnosis

Technical /

Isolation/S

Mcpu CPU

Load

CPU time

spent

Computational /

Detection &

Isolation/I,S

Mmem Memory

Load

Memory

allocated

Computational /

Detection &

Isolation/I,S

S – The set of scenarios for a given system description

Sn – The set of nominal scenarios for a given system

description

Sf – The set of faulty scenarios for a given system description

tfd – The time when the fault detection signal has been

asserted for the first time

tfi – The time when the last persistent fault isolation signal has

been asserted

ω act – The true component mode vector (ground truth)

ω pre – The predicted component mode vector (represents the

set of candidate diagnoses by the DA)

Td – Total computation time

Md – Peak amount of allocated memory

C – All possibly faulted components

D – Faulted components in ω pre.

I – Faulted components in ω act.

Finally, using the aforementioned notation, the 9 metrics are

defined as:

M fd – Fault Detection Time: The reaction time for a

diagnostic engine in detecting an anomaly (Kurtoglu et al.,

2008).

M fd = t fd (1)

M fi – Fault Isolation Time: The time for isolating a fault

(Kurtoglu et al., 2008). In many applications this metric is less

important than the diagnostic accuracy, but it is important in

sequential diagnosis, probing, etc.

M fi = t fi (2)

MFPR – False Positive Rate: The metric that penalizes

diagnostic algorithms which announce spurious faults

(Kurtoglu et al., 2008). The false positive rate is defined as:

MFPR =

m fp (s)
s∈S

∑

S

 (3)

where for each scenario s the “false positive" function mfp(s)

is defined as:

mfp (s) =
1, if t fd < tinj

0, otherwise

where tinj = ∞ for a nominal scenario

 (4)

MFNR – False Negative Rate: The metric that measures the

ratio of missed faults by a diagnostic algorithm (Kurtoglu et

al., 2008).

MFNR =

mfn (s)
s∈S f

∑

Sf

 (5)

where for each scenario s the “false negative" function mfn(s)

is defined as:

m fn (s) =
1, if t fd = ∞

0, otherwise

 (6)

MFDA – Detection Accuracy: The fault detection accuracy is

the ratio of number of correctly classified cases to the total

number of cases (Kurtoglu et al., 2008). It is defined as:

M FDA = 1−

m fp (s) + m fn (s)
s∈S

∑

S

 (7)

M ia – Classification Errors: Isolation classification error

metric measures the accuracy of the fault isolation by a

diagnostic algorithm and is defined as the Hamming distance

between the true component mode vector ω act and the

predicted component mode vector ω pre.
3

In the calculation of the classification error metric, the data

values for the Hamming distance are the respective modes of

components comprising a system description. For example, if

the true component mode vector of the system is [1,0,0,1,0]

and the predicted component mode vector is [1,1,0,0,0], the

classification error is 2. If more than one predicted mode

vector is reported by a DA, (meaning that the diagnostic

output consists of a set of candidate diagnoses), then the

classification error is calculated for each predicted component

mode vector and weighted by candidate probabilities reported

by the DA.

Mutl – Diagnostic Utility: The intuition behind the metric is to

charge a DA for every incorrect component replacement it

required to restore the circuit to functioning. For example, the

correct diagnosis should always receive a perfect score. The

diagnosis all components bad has a cost of the number of

components. Consider a single fault and the DA reports all

components good. Finding the faulty component would

require on average replacing component by component until

the system was functioning correctly (on average half the

components). More generally:

� � � �
� � � � � 	
 � � � � � � �
 � � � � � � � � � � � � � � � � � (8)

Where c(n,m) is defined as the expected number of trials

needed to isolate n out of m. If n is much smaller than m, then

it is approximately:

 � � � � � � � � � � � � �
 � � � � � � (9)

For example, to find 1 fault in m has cost m/2. To find 2 faults

in m is 2m/3. Similarly to the classification metric, if more

than one predicted mode vector is reported by a DA, then

error is calculated for each predicted component mode vector

and weighted by candidate probabilities reported by the DA.

Mcpu – CPU Load: This is the average CPU load during the

experiment

MCPU = ts + q
q∈Td

∑ (10)

where ts is the startup time of the diagnostic engine and Td is

a vector with the actual CPU time spent by the diagnostic

algorithm at every time step in the diagnostic session.

Mmem – Memory Load: This is the maximum memory size at

every step in the diagnostic session. CPU load during the

experiment

Mmem = maxm
m∈Md

 (11)

where Md is a vector with the maximum memory size at every

step in the diagnostic session.

3 The Hamming distance between two strings of data values

(of equal length) is the number of positions for which the

corresponding data values are different.

5. COMPETITION SETUP AND SCORING

Version 1.1 of the DXC Framework, implemented as

specified in (Kurtoglu et al., 2009), was used to run the

competition. Two computers with identical hardware
4
 were

set up, one running Windows™ and the other Linux. The

choice of target operating system was left to DA developers.

System profiling was performed on the machines over a

period of days to ensure stable experiment conditions.

DAs were run on competition datasets over a period of two

weeks. The Evaluator was then run on the full results set,

assigning relative rankings for each metric. Since there were

multiple systems in the Synthetic Track, the metrics

computed for each system were aggregated before assigning

relative rankings. The per scenario metrics were averaged

over all scenarios and aggregated over all systems. For each

of the Industrial track tiers there was only one system, so no

aggregation was necessary.

A DA that ranked first place in a given metric was awarded

10 points, second place was awarded 8, third 7, etc. This

score was then multiplied by a metric weight, shown in

Tables 8, 9, and 10, and added to the DA’s total.

Metric weights for the Industrial Track were determined by

considering a number of use cases in which the importance of

each metric was subjectively assessed. For example, in an

abort use case high importance was given to the mean time to

detect a fault whereas in a maintenance use case more weight

was given to the ability to isolate a fault. Similar

considerations were given to use cases such as real-time

recovery and control, ground support operations, and

resource limited applications. Since a use case was not

specified as part of the competition scenarios, we simply

averaged over all of the use cases to arrive at the final metric

weights.

6. DIAGNOSTIC ALGORITHMS

The teams that participated in the First International Diagnosis

Competition are listed in Table 7.

Table 7. DXC par ticipating DAs

Team Name Track(s) Algor ithm Type

FACT I1 Model-based

Fault Buster I1, I2 Statistical

HyDE-A I1, I2 Model-based

HyDE-S I1 Model-based

Lydia S Model-based

NGDE S Model-based

ProADAPT I1, I2 Probabilistic

RacerX I1 Change detection

RODON I1, I2, S Model-based

RulesRule I1 Rule-based

StanfordDA I2 Optimization

Wizards of Oz I1, I2 Model-based

4
 Intel

®
 XEON™ 2x2.20Ghz, 3.60 GB RAM

A total of twelve DAs participated, nine in Tier 1 of the

Industrial Track, six in Tier 2, and three in the Synthetic

Track. Brief descriptions of each of these algorithms are

provided below:

1. FACT – a model-based diagnosis system that uses hybrid

bond graphs, and models derived from them, at all levels

of diagnosis, including fault detection, isolation, and

identification. Faults are detected using an observer-based

approach with statistical techniques for robust detection.

Faults are isolated by matching qualitative deviations

caused by fault transients to those predicted by the model.

For systems with few operating configurations, fault

isolation is implemented in a compiled form to improve

performance (Roychoudhury et al., 2009).

2. Fault Buster – is based on a combination of multivariate

statistical methods, for the generation of residuals. Once

the detection has been done a neural

network performs classification for doing isolation.

3. HyDE-A – HyDE (Hybrid Diagnosis Engine) is a model-

based diagnosis engine that uses consistency between

model predictions and observations to generate conflicts

which in turn drive the search for new fault candidates.

HyDE-A uses discrete models of the system and a

discretization of the sensor observations for diagnosis

(Narasimhan and Brownston, 2007).

4. HyDE-S – uses the HyDE system but runs it on interval

values hybrid models and the raw sensor data

(Narasimhan and Brownston, 2007).

5. Lydia – is a declarative modeling language specifically

developed for Model-Based Diagnosis (MBD). The

language core is propositional logic, enhanced with a

number of syntactic extensions for ease of modeling. The

accompanying toolset currently comprises a number of

diagnostic engines and a simulator tool (Feldman et al.,

2006).

6. NGDE – Allegro Common Lisp implementation of the

classic GDE. Uses a minimum-cardinality candidate

generator to construct diagnoses for the competition.

7. ProADAPT – processes all incoming environment data

(observations from a system being diagnosed), and acts as

a gateway to a probabilistic inference engine. It uses the

Arithmetic Circuit (AC) Evaluator which is compiled

from Bayesian network models. The primary advantage

to using ACs is speed, which is key in resource bounded

environments (Mengshoel 2007).

8. RacerX – is a detection-only algorithm which detects a

percentage change in individual filtered sensor values to

raise a fault detection flag.

9. RODON – is based on the principles of the General

Diagnostic Engine (GDE) as described by de Kleer and

Williams and the G+DE by Heller and Struss. RODON

uses contradictions (conflicts) between the simulated and

the observed behavior to generate hypotheses about

possible causes for the observed behavior. If the model

contains failure modes besides the nominal behavior,

these can be used to verify the hypotheses, which speed

up the diagnostic process and improve the results (Karin

et al., 2006).

10. RulesRule – is a rule-based isolation-only algorithm. The

rule base was developed by analyzing the sample data and

determining characteristic features of fault. There is no

explicit fault detection though isolation implicitly means

that a fault has been detected.

11. StanfordDA – is an optimization-based approach to

estimating fault states in a DC power system. The model

includes faults changing the circuit topology along with

sensor faults. The approach can be considered as a

relaxation of the mixed estimation problem. We develop a

linear model of the circuit and pose a convex problem for

estimating the faults and other hidden states. A sparse

fault vector solution is computed by using l1

regularization (Zymnis et al., 2009).

12. Wizards of Oz – is a consistency-based algorithm. The

model of the system completely defines the stable (static)

output of the system in case of normal and faulty

behavior. Given a new command or new observations, the

algorithm waits for a stable state and computes the

minimum diagnoses consistent with the observations and

the previous diagnoses.

7. RESULTS AND DISCUSSION

7.1 Industrial Track

The results for the Industrial Track are shown in Table 8 and

Table 9 for Tier 1 and Tier 2, respectively. The overall winner

for both tracks was ProADAPT. RODON placed second in

Tier 1 and third in Tier 2. The StanfordDA, which did not

participate in Tier 1, placed second in Tier 2. However,

ProADAPT and StanfordDA benefitted from previous funded

experience with ADAPT so RODON was the official winner

of both tiers. The distribution of first or second ranks within

each metric was spread out among the DAs, no DA ranked

first or second for all of the metrics. Note that the final scores

and ranks depend on the weights applied to each metric.

Different weights, corresponding to different use cases, would

affect the results. The sensitivity of the results to the metrics

and weights is left for future study.

Figures 2-9 are graphical depictions of the data in Tables 8

and 9. A few observation follow. False positives were counted

in the following two situations: for nominal scenarios where

the DA declared a fault; and for faulty scenarios where the

DA declared a fault before any fault was injected. An error in

the rule base of RulesRule led to more false positive

indications for the faulty scenarios than for the nominal

scenarios and also resulted in a large number of classification

errors. For other DAs, false positives also resulted from

nominal commanded mode changes in Tier 2 in which the

relay feedback did not change status as of the next data

sample after the command. Here is an extract from one of the

input scenario files that illustrates this situation:

command @120950 EY275_CL = false;

sensors @121001 {… ESH275 = true, …}

sensors @121501 {… ESH275 = false, …}

A command is given at 120.95 seconds to open relay EY275.

The associated relay position sensor does not indicate open as

of the next sensor data update 51 milliseconds later. This is

nominal behavior for the system and examples were provided

in the sample data. A DA that does not account for this delay

will likely indicate a false positive in this case.

In several instances DAs reported diagnosis mode IDs which

did not match the names specified in the system catalog. For

these cases the diagnosis was treated as an empty candidate.

Table 8. Industr ial tr ack tier 1 results

 W eight R O D O N

W izards

O f O z

Fault

Buster ProA D A PT

H yD E-

A

H yD E-

S R ulesR ule FACT R acerX

FP R ate 1.3 0.0645 0.0000 0.1333 0.0333 0.0000 0.2000 0.8246 0.2813 0.0645

 Ranking 4 1 6 3 1 7 9 8 4

Points 6 9 4 7 9 3 1 2 6

FN R ate 1.3 0.0968 0.5000 0.3438 0.0313 0.4688 0.0741 0.0000 0.0667 0.1613

Ranking 5 9 7 2 8 4 1 3 6

Points 5 1 3 8 2 6 10 7 4

D et A cc 0.3 0.9194 0.7419 0.7581 0.9677 0.7581 0.8548 0.2419 0.8226 0.8871

 Ranking 2 8 6 1 6 4 9 5 3

Points 8 2 3.5 10 3.5 6 1 5 7

Class Errors 2.2 10.000 24.000 32.000 2.000 26.649 26.000 76.000 25.000 32.000

 Ranking 2 3 7 1 6 5 9 4 7

Points 8 7 2.5 10 4 5 1 6 2.5

T_det (m s) 2.2 218 11530 1893 1392 13223 130 1000 373 126

 Ranking 3 8 7 6 9 2 5 4 1

Points 7 2 3 4 1 8 5 6 10

T_iso (m s) 1.5 7205 11626 9259 4084 13840 653 282 9796 999999

 Ranking 4 7 5 3 8 2 1 6 9

Points 6 3 5 7 2 8 10 4 1

CPU (m s) 0.6 11766 1039 2039 1601 24795 513 117 1767 139

 Ranking 8 4 7 5 9 3 1 6 2

Points 2 6 3 5 1 7 10 4 8

M em (kb) 0.6 26679 1781 2539 1680 5447 5795 3788 4340 3572

 Ranking 9 2 3 1 7 8 5 6 4

Points 1 8 7 10 3 2 5 4 6

FIN A L

SCO R ES: 59.850 46.300 35.750 72.800 31.750 59.500 51.800 50.400 51.850

FIN A L

R AN K: 2 7 8 1 9 3 5 6 4

This could either negatively or positively impact the

classification error metric depending on whether the DA had a

correct or incorrect isolation. Participants were encouraged to

run their DA output through the evaluator code that was

distributed with the sample data sets to check for and correct

these syntax errors.

There are a few remarks in regards to the timing metrics listed

in Table 6 and shown graphically in Fig. 4. First, RacerX did

not have an isolation time as it was a detection-only DA.

Second, note the somewhat confusing result that the mean

isolation time for RulesRule was less than the mean detection

time. This has to do with the way the metrics are calculated.

The detection time is undefined for scenarios with a false

positive; however, the isolation time is not necessarily

undefined and is calculated as discussed in section 4. The

intent is to account for the situation where a DA retracts a

spurious detection signal and subsequently isolates to the

correct component. In this case the scenario is declared a false

positive but the accuracy and timing of the isolation is

calculated with respect to the last persistent diagnosis.

Consequently, for DAs with many false positives the detection

time may be calculated for fewer scenarios than the isolation

time with the result that the mean isolation time for all

scenarios could be less than the mean detection time.

However, in any scenario where both times are defined, the

DA isolation time is always greater than or equal to the

detection time, as would be expected.

Tier 1 had the interesting circumstance that the same DA was

implemented by two different modelers. HyDE-A was

modeled primarily with Tier 2 in mind and had a policy of

waiting for transients to settle before requesting a diagnosis.

The same policy was simply applied to Tier 1 as well, even

though transients in Tier 1 corresponded strictly to fault

events. On the other hand, HyDE-S was modeled only for Tier

1 and did not include a lengthy time-out period for transients

to settle. HyDE-S had dramatically smaller mean detection

and isolation times (see Fig. 4) with roughly the same number

of classification errors (Fig. 3) as HyDE-A. This illustrates the

kind of impact that modeling and implementation decisions

have on DA performance.

7.2 Synthetic Track

As can be seen in Table 7 all synthetic track DAs are model-

based. Lydia uses a stochastic approach to identify diagnoses

while RODON and NGDE use the familiar GDE-like

approaches. Their overall utility scores are not dramatically

different.

The results for the Synthetic Track are presented in Table 10.

Based on the overall metric NGDE was first, Lydia second,

and RODON third. Lydia was used to generate the scenario

sets and therefore is disqualified. Furthermore the designers

of Lydia and NGDE both participated in the design of DXC,

and are thus disqualified. So RODON is the official winner.

RODON scored reasonably well on the smaller circuits but

failed to return any diagnoses for the 4 larger circuits.

Use of computational resources varied dramatically over the

systems. Lydia used an order of magnitude fewer resources

than either RODON or NGDE and thus ranked first along the

memory and CPU metrics. RODON and NGDE are very

similar in resource usage, with RODON edging out NGDE.

Fig. 10 shows the DA utility for each of the circuits. Note

that the utility score decreases significantly with circuit size.

This decrease is not a result of poor performance or algorithm

design. Rather, an oracle could not do much better as a large

Table 9. Industr ial tr ack tier 2 results

 W eight R O D O N

W izards

O f O z

Fault

Buster ProA D A PT H yD E Stanford

FP R ate 1.3 0.5417 0.5106 0.8143 0.0732 0.0000 0.3256

 Ranking 5 4 6 2 1 3

Points 5 6 4 8 10 7

FN R ate 1.3 0.0972 0.0959 0.2400 0.1392 0.3000 0.0519

Ranking 3 2 5 4 6 1

Points 7 8 5 6 4 10

D et A cc 0.3 0.7250 0.7417 0.4250 0.8833 0.8000 0.8500

 Ranking 5 4 6 1 3 2

Points 5 6 4 10 7 8

Class Errors 2.2 84.067 159.248 130.000 76.000 121.569 110.547

 Ranking 2 6 5 1 4 3

Points 8 4 5 10 6 7

T_det (m s) 2.2 3490 30742 14099 5981 17610 3946

 Ranking 1 6 4 3 5 2

Points 10 4 6 7 5 8

T_iso (m s) 1.5 36331 47625 37808 12486 21982 14103

 Ranking 4 6 5 1 3 2

Points 6 4 5 10 7 8

CPU (m s) 0.6 80261 23387 5798 3416 29612 963

 Ranking 6 4 3 2 5 1

Points 4 6 7 8 5 10

M em (kb) 0.6 29878 7498 10261 6539 20515 5912

 Ranking 6 3 4 2 5 1

Points 4 7 6 8 5 10

FIN A L

SCO R ES: 70.500 51.400 52.400 83.200 61.000 81.500

FIN A L

R AN K: 3 6 5 1 4 2

number of faults can exhibit the same input-output behavior

and no DA could isolate the injected fault out of the large

ambiguity groups. The challenge presented by large

ambiguity groups is discussed further in the following section

and the NGDE and Lydia papers included in this collection.

8. ASSUMPTIONS, ISSUES, AND EXTENSIONS

The primary goal of this competition was to demonstrate an

end-to-end implementation of the DXC framework and create

a foundation for future DX competitions. As a result we made

several simplifying assumptions. We also ran into several

issues during the course of this implementation that could not

be addressed. In this section, we try to present those

assumptions and issues, which we hope can be addressed in

future competitions.

Although the competition was a success, it only addresses a

small set of the types of diagnostic tasks, which occur in

practice. It would be unfortunate for the DX community to

focus only on the tasks of this competition. Our goal is to

continually expand the coverage of diagnostic challenges

experienced in the field. Our hope is that every successive

year will expand the set of tasks in the competition and in

doing so produce an ever growing repository DX researchers

have available to evaluate their own algorithms.

8.1 Competition Scope

In the first year of the diagnostic competition, the fault

signatures were limited to abrupt parametric and discrete

types. Faults were inserted assuming uniform probabilities

and included component and sensor faults. In future years, we

will provide the failure rates of components and use these to

evaluate the precision of diagnoses. For the Industrial Track,

other fault types are presently possible to inject in the testbed

– including incipient, intermittent, and noise – and could be

included in future work. Additional ideas for future research

include giving DAs reduced sensor sets, introducing multi-

rate sensor data, injecting transient faults, allowing for

autonomous transitions, adding variable loads, and extending

the scope and complexity of the physical system. For the

synthetic track, all the systems were known a priori. This

means researchers could optimize for these circuits. We don’t

believe this happened this year, but to avoid this in future

years we will include entirely novel circuits along with the

familiar ones. This year we sampled only one observation

time. We will provide multiple observations. This will

evaluate a DAs ability to merge information from multiple

times. An important component of troubleshooting is

introducing probe points. In future years, we can evaluate the

number of probes needed to isolate the fault. This year the

input vector was supplied. The diagnostician could construct

the input vector, which was most informative. This year the

Synthetic Track focused on combinatorial circuits. In

subsequent years we hope to introduce troubleshooting of

sequential circuits. Finally, digital circuits are convenient to

model and conveniently illustrate many aspects of diagnostic

algorithms. In future years, we will extend the types of

systems to include. Two comparatively easy types of systems

to add are reprographic engines as we have a tool available to

Table 10. Synthetic tr ack results

 Lydia NGDE RODON

circuit #comp cpu mem utl cpu mem utl cpu mem utl

74182 19 51 154 0.4137 6335 11540 0.4793 3043 19773 0.4448

74L85 33 68 223 0.2433 6365 11784 0.3098 3888 20979 0.1952

74283 36 60 229 0.1580 6385 12231 0.1553 5351 20637 0.1147

74181 65 64 401 0.1504 6619 14625 0.1931 12527 25432 0.1417

c432 160 115 878 0.0871 7520 17868 0.2096 22621 36811 0.0906

c499 202 130 1094 0.0622 20347 32649 0.0699 23504 39872 0.0089

c880 383 203 1945 0.0483 13718 28622 0.0401 20347 43687 0.0182

c1355 546 296 2759 0.0295 22550 37930 0.0246 23253 33530 0.0012

c1908 880 538 4134 0.0179 26171 39843 0.0150 27718 38557 0.0180

c2670 1193 937 5867 0.0647 20537 61722 0.1076 35680 43063 0.0442

c3540 1669 1674 7900 0.0319 27022 82045 0.0407 0 0 0.0000

c5315 2307 3091 11316 0.0165 30926 93116 0.0275 0 0 0.0000

c6288 2416 3530 12037 0.0008 17483 102420 0.0563 0 0 0.0000

c7552 3512 11817 16679 0.0317 37989 125910 0.0283 0 0 0.0000

Averaged 1613 4687 0.0969 17855 48022 0.1255 12709 23024 0.0770

Per Metric Rank 1 1 2 3 3 1 2 2 3

Points 10 10 8 7 7 10 8 8 7

Metric Weight 1.5 1.5 7 1.5 1.5 7 1.5 1.5 7

Final Scores 86 91 73

Final Rank 2 1 3

generate such models, and analog circuits.

8.2 Metrics

Selecting the set of metrics to be used for evaluation was a

challenging job. We based our decision on the system and

kinds of faults we were dealing with. In reality we also need

to design metrics more closely associated with the context of

use. One common metric is to minimize total cost of repair

where cost includes down time to the customer,

diagnostician’s time, parts, etc. In addition since we were

dealing with abrupt, persistent, and discrete faults, metrics

associated with incipient, intermittent, and/or continuous

faults were not considered. The metrics listed in this paper do

not capture the amount of effort necessary to build models of

sufficient fidelity for the diagnosis task at hand. Furthermore,

we did not attempt to investigate the ease or difficulty of

updating models with new or changed system information.

The art of building models is an important practical

consideration which is not addressed in the current work.

The isolation accuracy metric used for the industrial track was

not suitable for the synthetic track. A DA which reported

nothing wrong on every scenario would come close to

winning the competition based on this metric. The main

problem with this metric is that the number of faulty

components is always small with respect to the size of the

system. As a result we cannot differentiate adequately

between a few faults and no faults.

Isolation classification error was also not suitable for the

synthetic track. This metric still suffers from the problem that

all good is scored too high: The Hamming distance between a

single fault and every component good is very small!

Ideally we would like to use a SAT solver to evaluate the

accuracy of a DA’s diagnosis. However, we did not have time

to implement it so as an alternate we selected utility as the

isolation accuracy metric for the synthetic track. One of the

major flaws of this metric is that average expected utility

scores decrease with system size, thereby implicitly de-

weighting diagnoses of larger circuits. We also considered and

rejected a classification error metric which would assign a

high score to any fault from an ambiguity group which we

considered a bigger flaw than the flaw for the utility metric.

Finally, the current isolation metrics evaluate diagnostic

performance based on a discrete isolation assumption in

which faults are isolated to one of the discrete modes of a

component. As more continuous type faults are introduced,

additional or generalized metrics are required in order to

calculate the accuracy of isolation estimates on a continuous

scale.

8.3 Competition Setup

Some practical issues arose in the execution of competition

experiments. Much effort was put into ensuring stable,

uniform conditions on the host machines; however, due to

time constraints and the unpredictable element introduced by

running external DA submissions, it was necessary to take

measures that may have caused slight variability. One

example was the manual examination of ongoing experiment

results for quality assurance. Future releases of the DXC

Framework can address this by being more robust to

unexpected DA behavior, and sending email notifications in

the event of such.

Additionally, for Java DAs, significant differences were

evident in the peak memory usage metric when run on Linux

versus Windows™. The cause for this was not explored due to

time constraints, as the method used on Windows™ for

calculating peak memory usage involved a Windows™ API

system call, the analysis of which was deemed too expensive.

The problem was bypassed by running all Java DAs on Linux.

This worked for all save one, RODON. When it was

determined that any change in RODON’s peak memory usage

score would not affect the final rankings in any way, the issue

was waived.

9. CONCLUSIONS

We presented the successful implementation of the DXC

framework called DXC’09. We learned some valuable lessons

trying to run this competition. One major takeaway is that

there is still a lot of work and discussion needed to determine

common comparison and evaluation framework for the

diagnosis community.

We hope to continue the work next year by running DXC’10.

We have identified several ways to extend the systems used in

the current competition some of which can be achieved in a

year’s time. We also hope to add other systems to the fold,

which may pose different diagnostic challenges.

ACKNOWLEDGMENTS

We extend our gratitude to David Nishikawa (NASA), David

Jensen (Oregon State University), Brian Ricks (University of

Texas at Dallas), Ole Mengshoel (Carnegie Mellon

University), Adam Sweet (NASA), David Hall (Stinger

Ghaffarian Technologies), all DXC’09 competitors, the

DX’09 organizers and many others for valuable discussions,

criticism and help.

REFERENCES

Bartys, M., R. Patton, M. Syfert, S. de las Heras, and J.

Quevedo (2006). Introduction to the DAMADICS

Actuator FDI Benchmark Study, Control

Engineering Practice, vol 14, pp. 577-596.
Brglez, F., and H. Fujiwara (1985). A neutral netlist of 10

combinational benchmark circuits and a target translator

in Fortran. In: Proc. ISCAS’85, pages 695–698.
de Kleer, J (2008). An improved approach for generating

Max-Fault Min-Cardinality diagnoses. In: Proc.

DX’08, pp. 247–252.
Feldman A., J. Pietersma, and A. van Gemund (2006). All

roads lead to fault diagnosis: Model-based reasoning

with LYDIA. In: Proc. BNAIC’06.
Feldman, A., G. Provan, and A. van Gemund (2008).

Computing observation vectors for Max-Fault Min-

Cardinality diagnoses. In: Proc. AAAI’08, pp. 919–
924.

Hansen, M., H. Yalcin, and J. Hayes (1999). Unveiling the

ISCAS-85 benchmarks: A case study in reverse

engineering. IEEE Design & Test, 16(3):72–80.
Karin L., R. Lunde, and B. Münker. (2006). Model-Based

Failure Analysis with RODON, In: Proc. ECAI’06.
Kurtoglu, T., S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J.

de Kleer, A. van Gemund, and A. Feldman (2009).

Towards a Framework for Evaluating and Comparing

Diagnosis Algorithms. In: Proc. DX’09.
Mengshoel O.J. (2007). Designing resource-bounded

reasoners using Bayesian networks: System health

monitoring and diagnosis, In: Proc. DX’07, pp. 330-
337.

Narasimhan, S., and L. Brownston (2007). HyDE – A

General Framework for Stochastic and Hybrid Model-

based Diagnosis. In: Proc. DX’07, pp. 162-169.
Orsagh R.F., M.J. Roemer, C.J. Savage, and M. Lebold,

(2002). Development of Performance and Effectiveness

Metrics for Gas Turbine Diagnostic Techniques.

Aerospace 2002 IEEE Conference

Proceedings, Vol6, pp. 2825-2834.
Poll, S., A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C.

Lee, O. J. Mengshoel, C. Neukom, D. Nishikawa, J.

Ossenfort, A. Sweet, S. Yentus, I. Roychoudhury, M.

Daigle, G. Biswas, and X. Koutsoukos (2007). Advanced

Diagnostics and Prognostics Testbed. In: Proc.

DX’07.
Roychoudhury I., G. Biswas, and X. Koutsoukos (2009).

Designing Distributed Diagnosers for Complex

Continuous Systems, IEEE Transactions on

Automation Science and Engineering, vol. 6, no.
2, pp. 277-290.

Siddiqi, S. and J. Huang (2007). Hierarchical diagnosis of

multiple faults. In: Proc. IJCAI’07, pp. 581–586.
Simon L., J. Bird, C. Davison, A. Volponi, R. E. Iverson,

(2008). Benchmarking Gas Path Diagnostic Methods: A

Public Approach, Proceedings of the ASME Turbo

Expo 2008: Power for Land, Sea and Air,

GT2008.
Zymnis A., S. Boyd, and D. Gorinevsky (2009). Relaxed

maximum a posteriori fault identification, Signal

Processing, vol. 89, no. 6, 2009, pp. 989–999.

Appendix A. FIGURES.

Fig. 1. The ADAPT EPS (Electrical Power System)

Fig. 2. Industrial track tier 1 false positive rate, false

negative rate, and detection accuracy by DA

Fig. 3. Industrial track tier 1 classification errors by DA

Fig. 4. Industrial track tier 1 detection and isolation times

by DA

Fig. 5. Industrial track tier 1 CPU time and peak memory

usage by DA

Fig. 6. Industrial track tier 2 false positive rate, false

negative rate, and detection accuracy by DA

Fig. 7. Industrial track tier 2 classification errors by DA

Fig. 8. Industrial track tier 2 detection and isolation

times by DA

Fig. 9. Industrial track tier 2 CPU time and peak

memory usage by DA

Fig. 10. Synthetic track DA utility scores by circuit

