
Automated Fault Diagnosis in Embedded Systems∗

Peter Zoeteweij Jurryt Pietersma Rui Abreu Alexander Feldman
Arjan J.C. van Gemund

Embedded Software Lab
Delft University of Technology

The Netherlands
corresponding author: p.zoeteweij@tudelft.nl

Abstract

Automated fault diagnosis is emerging as an important
factor in achieving an acceptable and competitive cost/de-
pendability ratio for embedded systems. In this paper, we
survey model-based diagnosis and spectrum-based fault lo-
calization, two state-of-the-art approaches to fault diag-
nosis that jointly cover the combination of hardware and
control software typically found in embedded systems. We
present an introduction to the field, discuss our recent re-
search results, and report on the application on industrial
test cases. In addition, we propose to combine the two tech-
niques into a novel, dynamic modeling approach to software
fault localization.

c©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

Keywords: diagnosis, embedded systems, dependability.

1 Introduction

The complexity of the systems that we use on a day-to-
day basis is constantly growing. This trend is particularly
strong in the area of embedded systems, where new func-
tionality can quickly be realized in software. In combina-
tion with an ever decreasing time-to-market, and a practi-
cally constant rate of faults per line of code, this implies
that system reliability is decreasing.

Automated, or computer-aided diagnosis techniques are
emerging as an important means to counter this trend. They
serve to localize the faults that are the root causes of system

∗This work has been carried out as part of the TANGRAM, TRADER,
and FINESSE projects. The TANGRAM and TRADER projects are carried
out under the responsibility of the Embedded Systems Institute, and are
partially supported by the Netherlands Ministry of Economic Affairs under
grant TSIT2026 and the BSIK03021 program, respectively. The FINESSE

project is supported by STW grant DES.7015.

failures. As such, they help to shorten the test-diagnose-
repair cycle in the software development process, allowing
more faults to be removed. In addition, automated diagnosis
techniques can be used in maintenance, and can serve as the
basis for (automated) recovery. In this role they are a vital
ingredient of dependable autonomic systems.

In this paper we survey two approaches to automated
diagnosis: model-based diagnosis (MBD), and spectrum-
based fault localization (SFL). The former technique, which
originated in the artificial intelligence domain, infers a di-
agnosis from a compositional, behavioral model combined
with real-world observations, and has successfully been ap-
plied to digital circuits and complex mechanical systems.
The latter technique, SFL, overcomes the dependability
of MBD on suitable behavioral models, and applies natu-
rally to software, for which these models are generally not
available. Together, MBD and SFL cover the combination
of hardware devices and control software that is typically
found in the area of embedded systems.

Specific contributions of this paper are the following.

• We take a high-level view on the diagnosis problem,
which allows us to compare and relate MBD and SFL.

• We report recent successes with applying the two tech-
niques in an industrial context, confirming their appli-
cability in the area of embedded systems.

• We propose to combine MBD and SFL into a dynamic
modeling approach to software fault localization.

The remainder of this paper is organized as follows. In
Section 2 we introduce the diagnosis problem, and outline
MBD and SFL. In Sections 3 and 4 we introduce the actual
techniques, and discuss our current research and success-
ful applications on industrial test cases. In Section 5 we
propose to combine MBD and SFL into a dynamic model-
ing approach to software fault localization. We conclude in
Section 6.

y=f(x , h)
f1 f2 f3

ff4 5

x

Figure 1. Conceptual view of a system

2 The Diagnosis Problem

Central to a discussion on diagnosis are the notions of
failure and fault. A failure is a discrepancy between ex-
pected and observed behavior, and a fault is a property of
the system that causes such a discrepancy. The notion of
an error is sometimes used to indicate a system state that
potentially leads to a failure [5], but for our purposes the
distinction between failure and error is largely artificial, and
depends only on what can be observed and what has been
specified.

The purpose of diagnosis is to identify the system com-
ponents that are the root cause of observed failures. We
consider that a system consists of n components, and that it
applies some system function y = f(x, h), where x and y

represent observations of system input and output, respec-
tively, and where h = (h1, . . . , hn) indicates the health
state of each of the n components (see Figure 1). The basic
health states of a component are healthy and faulty, but as
we shall see in Section 3, this can further be refined. Di-
agnosis can be understood as solving the inverse problem
h = f−1(x, y), i.e., find the combinations of component
health states that explain the observed output for a given in-
put. Note that the internals of the system are not observable,
which distinguishes the diagnosis problem from a compo-
nent testing problem.

Because the exact system function f is generally not
known, diagnosis always involves the use of a system
model. Depending on the amount of information that this
model M provides about the system components, it can be
used for diagnosis as follows.

• If M is composed from models M1, . . . , Mn for each
of the system components, and thus specifies their in-
teraction and nominal behavior, it can be used for di-
agnosis by searching for combinations of health states
h such that M(x, h) = y.

• If, in addition to the nominal system behavior M(x) =
y′, the model only specifies how the components inter-
act to determine the various elements yi of y, without
describing their actual behavior, it can still be used for
diagnosis by identifying the extent to which compo-
nents are exclusively involved in the observations yi

for which yi 6= y′

i.

(a)

zi1

i2

i3

h2

h3

h1

y1

y2

x

(b)

h1 ⇒ (z ⇔ ¬x)

h2 ⇒ (y1 ⇔ ¬z)

h3 ⇒ (y2 ⇔ ¬z)

Figure 2. Three-inverters example: (a) circuit,
and (b) model

The former approach to diagnosis is known as model-based
diagnosis, which is the subject of Section 3. The latter
approach is known as spectrum-based fault localization,
which is the subject of Section 4.

3 Model-based Diagnosis

Model-based diagnosis was first proposed by Reiter [20]
and De Kleer [7] and implemented in the General Diag-
nostic Engine. The best known practical examples can be
found in the space domain [23] and in automotive appli-
cations [22]. Examples in the space domain are the Deep
Space 1 [17] and Earth Observing 1 [18] missions, both part
of NASA’s New Millennium Program. Related but separate
fields are that of Fault Tolerant control and diagnosis with
Bayesian networks. In this section we describe the princi-
ples of MBD, the modeling technique, the underlying infer-
ence algorithms, and industrial applications.

3.1 MBD Principles

We demonstrate the principles of model-based diagnosis
using the circuit of Figure 2(a) as an example (for examples
beyond combinatorial logic, see [19]). This system consists
of three logical inverters, which we model as components,
each with an input u and an output v. The healthy, nomi-
nal behavior of an inverter is that the output is equal to the
inverted input, i.e.,

h ⇒ (v ⇔ ¬u).

We can compose a model of the circuit of Figure 2(a)
from three models of inverter components, by relating their

inputs and outputs according to the connections of the cir-
cuit. This model is shown in Figure 2(b). Note that this only
models healthy behavior. In model-based diagnosis, the ex-
tent to which models capture faulty behavior is referred to
as model strength, and the absence of such information in
our example makes this a weak model.

If we were able to probe the inputs and outputs of all
components of a system, the diagnosis problem would be
trivial: we could simply search for the components whose
behavior does not correspond to its component model. Typ-
ically, however, a significant part of the system is hidden
from observation (the inside of the dashed box in Figure 1),
and we have to reason about possible explanations for the
observed, faulty behavior instead. In the case of our ex-
ample circuit, we assume that only x, y1, and y2 can be
observed.

Suppose we observe (x, y1, y2) = (1, 0, 1). The obser-
vation y1 = 0 indicates a system failure, and to diagnose
this failure we can substitute the observed input and out-
put in the model of Figure 2(b), where 1 and 0 correspond
to true and false, respectively. This yields the following
propositions:

h1 ⇒ ¬z

h2 ⇒ z

h3 ⇒ ¬z

which equals

(¬h1 ∨ ¬z) ∧ (¬h2 ∨ z) ∧ (¬h3 ∨ ¬z).

Resolution yields the following conjunction of conflicts,

(¬h1 ∨ ¬h2) ∧ (¬h2 ∨ ¬h3),

which states that (1) at least one of i1 and i2 is faulty, and
(2) at least one of i2 and i3 is faulty. The minimal diagnoses
are given by the minimal hitting set [20], which equals

¬h2 ∨ (¬h1 ∧ ¬h3),

so either inverter i2 is at fault (single fault), or both inverters
i1 and i3 are at fault (double fault). However, for example,
only inverter i1 being at fault does not explain the observed
failure (x, y1, y2) = (1, 0, 1), because it would imply that
y1 and y2 are equal.

The first column of Table 1 lists all combinations of com-
ponent health states (diagnosis candidates) that are sub-
sumed by the above minimal diagnosis. Because of the
model weakness and limited observability (z is unknown),
multiple explanations exist. This means that after this ob-
servation we still have some residual uncertainty about the
actual system health state.

There are a number of ways to reduce this uncertainty
and improve the quality of a diagnosis. One possibility is to

weak strong z = 1 multiple
(1, 0, 1) (1, 0, 1)
(0, 0, 1) (0, 0, 1) (0, 0, 1)
(1, 0, 0) (1, 0, 0)
(0, 1, 0) (0, 1, 0) (0, 1, 0)
(0, 0, 0) (0, 0, 0) (0, 0, 0)

Table 1. Diagnoses (h1, h2, h3) for the example
circuit, with (x, y1, y2) = (1, 0, 1)

add constraints to the model that further specify the faulty
behavior. For example, if we want to explore the possible
explanations for the specific fault that an inverter has its out-
put permanently set to 0 (called stuck-at-zero), we can add
the constraint ¬h ⇒ ¬v to the component model.

For the resulting model, which is called strong because
it makes the faulty behavior explicit, the diagnosis is listed
in the second column of Table 1. The additional constraints
reduce the number of solutions, which improves the quality
of the diagnosis. Note that we have to be careful with this
strong modeling approach as our model can no longer ex-
plain any behavior resulting from unanticipated faults, and
may prove to be inconsistent with some observations.

Another approach is to improve quality by increasing the
observability. Consider adding z = 1 to the observation.
The resulting diagnosis is shown in the third column of Ta-
ble 1. Note that for this simple example, all variables are
now observable, which makes the diagnosis problem triv-
ial. In general, this will not be the case. Even so, while all
explanations indicate that i1 and i3 are broken, there is still
uncertainty about the health state of i2.

Besides increasing the number of observable variables
we can also choose to use multiple observations, which cap-
ture the behavior of the system for different inputs. The re-
sults of combining the initial observation with a second ob-
servation (x, y1, y2) = (0, 0, 1) is shown in the last column
of Table 1.

Typically, though, a unique explanation for the observed
behavior does not exist, and model-based reasoning is cou-
pled with calculating the probability that the individual di-
agnosis candidates capture the actual fault state [7]: the fail-
ure probability of the individual components yield initial
probabilities for diagnosis candidates. Using Bayesian rea-
soning these can then be updated to reflect the probability
that the candidates explain the observations underlying the
diagnosis.

3.2 Diagnostic Performance

The model of Figure 2(b) constitutes a propositional for-
mula, and standard techniques for propositional satisfiabil-
ity solving can be used to automatically find those expla-
nations (h1, h2, h3) that are consistent with the system de-

scription and observations. We have implemented MBD
with the modeling language LYDIA (Language for sYstem
DIAgnosis, [15]) and accompanying tools. LYDIA is de-
signed to facilitate a conversion to a propositional formula
in polynomial time.

However, the underlying satisfiability problem is NP-
complete, and requires efficient, and specialized methods
for searching the solution space. One such method is to use
a probability heuristic that can be applied in an A* search al-
gorithm. A further important improvement on such an algo-
rithm is the use of conflict sets to skip over inconsistent so-
lutions. For LYDIA we have implemented conflict-directed
A* (CDA*) as proposed by [23].

Another promising approach, which has also been imple-
mented, is to exploit model hierarchy [10]. A hierarchical
system description is composed of smaller partial system
descriptions that are organized in a hierarchical structure
with one system description on the highest level. By ex-
ploiting the hierarchical information and selectively com-
piling parts of the model it is possible to increase the diag-
nostic performance and to trade cheaper preprocessing time
for faster run-time reasoning. Our hierarchical algorithm,
being sound and complete, allows large models to be diag-
nosed, where compile-time investment directly translates to
run-time speedup. Experiments with a diagnosis benchmark
based on ISCAS-85 circuitry models have shown speed-up
factors between 2 to 5.6 compared to the CDA* algorithm.

Last, but not least, the use of non-deterministic, i.e.,
stochastic algorithms to traverse the search space provides
an important speed-up for multiple fault diagnoses. We
have implemented a greedy stochastic algorithm called
SAFARI (StochAstic Fault diagnosis AlgoRIthm, [9]).
For weak fault models, it can compute 80-90% of all
cardinality-minimal diagnoses, several orders of magnitude
faster than state-of-the-art deterministic algorithms, such as
CDA*, allowing systems with several hundreds of compo-
nents to be diagnosed in seconds. This algorithmic research
will be applied to the fault diagnosis of Océ copiers within
the FINESSE project (see [15]).

LYDIA supports variables both in the Boolean and finite
integer (FI) domains. The use of FI domains is costly in
terms of diagnosis time. We have shown that an algorithm
working directly in the FI domain is a preferred option over
Boolean encodings, as it offers speed-ups of up to two or-
ders of magnitude [8].

3.3 Industrial Applicability

As part of the TANGRAM project five subsystems of
ASML [4] wafer scanners have been modeled in LYDIA

for diagnosis. Table 2 lists the following characteristics of
these cases: engineering discipline, whether it involved dy-
namic system functionality, the model size, the time spent

on the modeling, and the (estimated) improvement in diag-
nosis time.

The EPIN case is a good example of how even a rela-
tive simple system consisting of three sensors, an actuator,
and some safety monitoring logic, can be problematic for
a diagnosis based on human reasoning. In one particular
case it took two days to finally correctly identify the fault
sensor because of an initial mistake in the diagnostic rea-
soning. The EPIN and WS cases have both been extended
by exploring automatic model derivation from Netlists and
VHDL code respectively. This automatic modeling step re-
duces modeling effort and decreases model maintenance as
part of the model can be kept automatically up-to-date to
design.

In half of the cases the diagnosis time had to be estimated
based on earlier cases and simulation experiments. Based
on these estimates and actual diagnosis times we find that
the investment in modeling time yields significant speed-
ups in diagnosis time.

4 Spectrum-based Fault Localization

While MBD is well-suited for circuits and hardware de-
vices, software is rarely modeled in sufficient detail during
development, and derivation of suitable behavioral models
from source code is troublesome at best. However, as we
already indicated in Section 2, diagnosis can be performed
in absence of such models by analyzing the involvement of
components of a system in the faulty behavior.

Consider the example failure (x, y1, y2) = (1, 0, 1) of
the previous section. Without knowing the functionality of
the components, from Figure 2(a) we can still deduce that
i1 is involved in both output observations. Inverter i3 is
only involved in the correct output observation y2, but i2
is the only component that is exclusively involved in the
faulty output observation y1. This makes i2 the most likely
cause of the observed failure, while i3 is least likely to be
involved.

This technique, which is known as spectrum-based fault
localization, applies quite naturally to software, which can
be seen as an executable model that indicates, through pro-
filing instrumentation, the involvement of its various com-
ponents in correct and faulty behavior. Examples of existing
systems for diagnosis and debugging that implement SFL
are Pinpoint [6], which focuses on large, dynamic on-line
transaction processing systems, and Tarantula [13] which
focuses on C software. In this section we introduce the
principles of SFL, and describe our recent research on its
diagnostic performance. In addition, we discuss a success-
ful application to industrial (embedded) software.

system engineering dynamic model modeling diagnosis time
disciplines size [loc] time [days] order of magnitude

original MBD
LASER E, M, S, O X 806 20 days (*) ms (*)
EPIN E, M 37 7 days ms
POB E, M, O 500 12 hours (*) s (*)
ILS E 82 8 minutes ms
WS E, M, S, H X 2151 15 days s

Table 2. Overview of modeling cases. E = electric, M = mechanic, S = software, O = optical, and
H=hydraulic. Estimates are indicated with (*).

4.1 SFL Principles

The name SFL refers to the use of so-called program
spectra [21] for measuring the activity of software compo-
nents. Here we will be using block hit spectra, which are ar-
rays of binary flags with an entry per block of source code
(see Figure 4), indicating the activity or inactivity of that
block.

For the application of SFL to software, we require the
program spectra of several runs of a program, some of
which have demonstrated an error or failure (called failed
runs). The other runs are called passed runs. The block
hit spectra of several runs constitute a binary matrix, whose
columns correspond to the different components (blocks in
this case) of the program. Figure 4 shows an example for
six runs and four components. The passed / failed infor-
mation constitutes another column vector, which is called
the error vector, and encodes the comparison of y and y′

in Section 2. Fault localization essentially consists in iden-
tifying the component whose column vector resembles the
error vector most.

To quantify this resemblance we use a similarity coeffi-
cient, as known from data clustering (see, e.g., [12]). As an
example, the Jaccard similarity coefficient (see also [12])
expresses the similarity of two binary vectors x and y as the
number of positions in which they share an entry 1, divided
by this same number plus the number of positions in which
they differ:

s =
a11

a11 + a01 + a10

where apq = |{i | xi = p ∧ yi = q}|, and p, q ∈ {0, 1}.
To illustrate the approach, consider the function of Fig-

ure 3. It is meant to sort, using the bubble sort algorithm, a
sequence of rational numbers, but it has a bug in the swap-
ping code of block 4: only the numerators are swapped.
Figure 4 shows the block hit spectra for six input sequences.
The fault in the swapping code only manifests itself for the
fifth input, 〈 3

1
, 2

2
, 4

3
, 1

4
〉, for which the output is 〈 1

1
, 2

2
, 4

3
, 3

4
〉

instead of 〈 1

4
, 2

2
, 4

3
, 3

1
〉. Consequently, we mark the fifth run

as failed by an entry 1 in the error vector. The Jaccard simi-
larities s1, . . . , s4 of the error vector to the four column vec-

void R a t i o n a l S o r t (i n t n , i n t ∗num ,
i n t ∗den)

{
/∗ b l o c k 1 ∗ /
i n t i , j , temp ;
f o r (i =n−1; i >=0; i−−) {

/∗ b l o c k 2 ∗ /
f o r (j =0 ; j<i ; j ++) {

/∗ b l o c k 3 ∗ /
i f (Ra t iona lGT (num [j] , den [j] ,

num [j +1] , den [j + 1])) {
/∗ b l o c k 4 ∗ /
temp = num [j] ;
num [j] = num [j + 1] ;
num [j +1] = temp ;

}
}

}
}

Figure 3. A faulty C function for sorting ratio-
nal numbers and its program spectra

tors in the spectrum data are listed in the bottom row of the
table. Block 4 has the highest similarity, which (correctly)
identifies the swapping code as the most likely location of
the fault.

4.2 Diagnostic Performance

The calculated similarity coefficients rank the compo-
nents of a system with respect to the likelihood that they
cause the detected failures. If the actual location of a fault
is known, we can then assess the quality of the SFL diagno-
sis based on its position in the ranking. This way, we have
investigated the influence of several parameters on the di-
agnostic quality, using a benchmark set of software faults
known as the Siemens set [11]. This set consists of seven C
programs that range in size from 20 to 124 blocks of code.
For every program, a number of faulty versions is available,

block
input 1 2 3 4 error

〈 〉 1 0 0 0 0
〈 1

4
〉 1 1 0 0 0

〈 2

1
,

1

1
〉 1 1 1 1 0

〈 4

1
,

2

2
,

0

1
〉 1 1 1 1 0

〈 3

1
,

2

2
,

4

3
,

1

4
〉 1 1 1 1 1

〈 1

4
,

1

3
,

1

2
,

1

1
〉 1 1 1 0 0

sj = 1

6

1

5

1

4

1

3

Figure 4. Program spectra for the Rational-
Sort function

each with a known bug. In addition, every program has a
set of test cases that ensures full code coverage.

One of our research results concerns the so-called Ochiai
similarity coefficient. This coefficient is known from biol-
ogy, and to our knowledge, it has not previously been ap-
plied to SFL. Using 120 single-site faults from the Siemens
set, we observed that the Ochiai coefficient outperforms
several other coefficients, including the ones used by the
Pinpoint (the Jaccard coefficient) and Tarantula tools men-
tioned above. This is illustrated in Figure 5, which shows
the diagnostic quality for these three coefficients as a func-
tion of the rate at which fault activations lead to failures.
Here, diagnostic quality is expressed as the percentage of
code that need not be examined if the SFL ranking is fol-
lowed when searching for the fault, averaged over all faults
in our benchmark set. It also shows that SFL can already
provide a useful diagnosis at low failure rates.

Further experiments have shown that including more
failed runs is always safe because the accuracy of the di-
agnosis either improves or remains the same. We observed
little or no improvement for more than six failed runs. How-
ever, while stabilizing around twenty runs, the effect of in-
cluding more passed runs is unpredictable, and may actu-
ally lead to worse diagnoses. To what extent these results
depend on program characteristics is subject to further in-
vestigations. See [1, 2] for details on these experiments.

4.3 Industrial Application

To some extent, the Siemens set faults are artificial, and
to evaluate its practical applicability we implemented SFL
for the control software of a product line of analog televi-
sion sets from Philips (now NXP), and diagnosed two faults,
one existing, and one seeded to replicate a problem in an-
other product line.

A known problem with the specific version of the control
software that we had access to, is that after teletext1 view-

1A standard for broadcasting information (e.g., news, weather, TV
guide) in text pages, popular in Europe.

 95

 90

 85

 80

 75

 100 80 60 40 20 1

di
ag

no
st

ic
 q

ua
lit

y

% faults -> failures

’Ochiai’
’Jaccard’

’Tarantula’

Figure 5. SFL diagnostic quality

ing, the CPU load when watching television (TV mode) is
approximately 10% higher than before teletext viewing. To
diagnose this problem, we obtained hit spectra for the func-
tions tied to the ±300 logical threads in the control soft-
ware. We generated a new spectrum every second, and used
a scenario of 60 s. TV mode, 30 s. teletext viewing, and
60 s. TV mode, where we marked the spectra for the last
60 s. as failed. In the resulting ranking, the function that
was known to activate the fault came second.

The other fault entails that a text search in a teletext page
without visible context locks up the teletext functionality.
A likely cause for this lock-up, by which we reproduced it in
our experimental platform, is an inconsistency in the values
of two state variables in different subsystems. To diagnose
this problem, we collected hit spectra for all blocks of code
in the control software (over 60,000). Each time a key was
pressed on the remote control we started recording a new
spectrum. For error detection we used an assert-like check
on the two state variables, that would flag an error if they
assumed an invalid combination. This way, we were quickly
able to find a straightforward scenario of 26 key presses,
including a magic sequence to activate the fault, that yields
a perfect diagnosis.

These experiments have confirmed our belief that be-
cause of its low time and space complexity, SFL is well-
suited for the embedded software domain, which is char-
acterized by scarce memory and CPU resources, and high
concurrency. See [24] for a more in-depth discussion.

5 Towards an Integrated Approach

Table 3 compares model-based diagnosis and spectrum-
based fault localization on the nature of the diagnosis that
these techniques deliver, how the diagnosis candidates are
ranked, the primary role of the model, factors that influ-
ence the diagnostic quality, and the primary application do-
mains. As can be seen from this comparison, there are
a number of distinct advantages to model-based diagnosis

MBD SFL
Diagnosis valid explanations ranking of all compo-

nents

Ranking probability theory statistical similarity

Multiplicity multiple-fault single-fault

Model used for reasoning used for error detec-
tion

Quality most likely explana-
tion need not be ac-
tual cause

innocent components
may rank high

Domain hardware software

Table 3. Comparison of MBD and SFL

over spectrum-based fault localization: whereas SFL pro-
duces a full ranking of all individual components based on
the extent to which their behavior is statistically similar to
the occurrence of errors, MBD only yields diagnosis can-
didates that are valid explanations for the observed behav-
ior in the context of the model. Moreover, MBD naturally
supports multiple-faults, and because the diagnoses that it
delivers are susceptible to probability theory, the notion of
entropy, or information content applies [7], and can be used
as an indication of diagnostic quality.

To benefit from the advantages of MBD in the software
domain, several approaches exist to derive suitable mod-
els from source code (see [16] for an overview). How-
ever, because these models are typically derived using static
analysis, they fail to consider dynamic execution behavior,
which, in contrast, forms the essence of the SFL approach.
Aimed at combining the best of both worlds, in our fu-
ture work we will investigate a dynamic modeling approach,
where program spectra of failed runs are laid down in a sim-
ple, causal model relating component activity to failures.
This model essentially states that the components involved
in a failed run cannot all be healthy. The inherent weakness
of such models, and the large number of resulting diagnosis
candidates can then be countered as follows.

1. Using, for example, the intermittent fault model of
[14], involvement of components in passed runs can
be used to reduce the probability that diagnosis candi-
dates containing these components describe the actual
fault state.

2. The ranking of components produced by SFL, as de-
scribed in Section 4, can be used as a heuristic to guide
the search for diagnosis candidates, allowing that high-
probability explanations are considered first.

For an in-depth description of the dynamic modeling ap-
proach, see [3].

6 Conclusion

Model-based diagnosis and spectrum-based fault local-
ization are two practicable approaches to automated diagno-
sis that have successfully been applied to systems with em-
bedded software. The experiments reported in Section 3.3
have led ASML to adopting MBD as a means to increase
the efficiency of the manual diagnosis process. As a re-
sult of the promising outcome of the experiment reported
in Section 4.3, further SFL experiments are now conducted
at NXP to evaluate the technique on actual problem reports
filed during the development of a more recent product.

In addition to a further investigation of factors that influ-
ence the diagnostic accuracy of MBD and SFL, we believe
that there are many opportunities for combining the two
diagnosis techniques. Specifically, in our future work we
plan to further investigate the dynamic modeling approach
to software fault localization outlined in Section 5.

Acknowledgments.

The authors gratefully acknowledge discussions with the
TANGRAM, TRADER, and FINESSE project partners.

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the
accuracy of spectrum-based fault localization. In Proc. TAIC
PART’07, pp. 89 – 98. IEEE Computer Society, 2007.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An evalua-
tion of similarity coefficients for software fault localization.
In Proc. PRDC’06, pp. 39 – 46. IEEE Computer Society,
2006.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. Tech-
niques for diagnosing software faults. Technical Re-
port TUD-SERG-2008-014, Delft University of Technology,
2008.

[4] ASML website. http://www.asml.com.
[5] A. Avižienis, J.-C. Laprie, B. Randell, and C. E. Landwehr.

Basic concepts and taxonomy of dependable and se-
cure computing. IEEE Trans. Dependable Sec. Comput.,
1(1):11–33, 2004.

[6] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: problem determination in large, dynamic internet
services. In Proc. DSN 2002. IEEE Computer Society, 2002.

[7] J. de Kleer and B. C. Williams. Diagnosing multiple faults.
In M. L. Ginsberg, ed., Readings in Nonmonotonic Reason-
ing, pp. 372–388. Morgan Kaufmann, 1987.

[8] A. Feldman, J. Pietersma, and A. J. C. van Gemund. A
multi-valued SAT-based algorithm for faster model-based
diagnosis. In C. A. Gonzáles, T. Escobert, and B. Pulido,
ed., Proc. DX-06, pp. 93–100. June 2006.

[9] A. Feldman, G. Provan, and A. J. C. van Gemund. Approxi-
mate model-based diagnosis using greedy stochastic search,
In Proc. SARA’07, LNCS 4612, pp. 139–154. Springer,
2007.

[10] A. Feldman and A. J. C. van Gemund. A two-step hierarchi-
cal algorithm for model-based diagnosis. In Proc. AAAI’06,
pp. 827–833. AAAI Press, 2006.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-
periments of the effectiveness of dataflow- and controlflow-
based test adequacy criteria. In Proc. ICSE’94, pp. 191–200.
IEEE Computer Society / ACM Press, 1994.

[12] A. K. Jain and R. C. Dubes. Algorithms for clustering data.
Prentice-Hall, 1988.

[13] J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proc.
ASE 2005, pp. 273–282. ACM Press, 2005.

[14] J. De Kleer. Diagnosing intermittent faults. In Proc. DX’07,
Nashville, TN, USA, pp. 45–51. May 2007.

[15] LYDIA website. http://www.fdir.org/lydia/.
[16] W. Mayer and M. Stumptner. Models and tradeoffs in

model-based debugging. In Proc. DX’07, Nashville, TN,
USA, pp-138–145. May 2007.

[17] NASA. Deep space 1 website. http://nmp.nasa.
gov/ds1/.

[18] NASA. Earth observing 1 website. http://eo1.gsfc.
nasa.gov/.

[19] J. Pietersma and A. J. C. van Gemund. Symbolic factoriza-
tion of propagation delays out of diagnostic system mod-
els. In Proc. DX’07, Nashville, TN, USA, pp. 170–177. May
2007.

[20] R. Reiter. A theory of diagnosis from first principles. In
M. L. Ginsberg, ed., Readings in Nonmonotonic Reasoning,
pp. 352–371. Morgan Kaufmann, 1987.

[21] T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the
year 2000 problem. In M. Jazayeri, H. Schauer, ed., Proc.
ESEC/FSE’97, LNCS 1301, pp. 432–449. Springer, 1997.

[22] P. Struss. A model-based methodology for the integration of
diagnosis and fault analysis during the entire life cycle. In
H.-Y. Zhang, editor, Preprints of SAFEPROCESS 2006, pp.
1225–1230. IFAC, 2006.

[23] B. C. Williams and R. J. Ragno. Conflict-directed A* and its
role in model-based embedded systems. J. Discrete Applied
Math, 155(12)1562–1595. Elsevier, 2003.

[24] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. C. van
Gemund. Diagnosis of embedded software using program
spectra. In Proc. ECBS’07, pp. 213–218. IEEE Computer
Society, 2007.

